Vestibulotoxicity

Timothy Hullar, MD
NCRAR

Dawn Konrad-Martin, PhD, CCC-A
NCRAR

Kara Nofstker
NCRAR

Jake Hulswit, BS
NCRAR
Outline

I. Background
II. Vestibular Anatomy and Physiology
III. Vestibulotoxic Medications
IV. Diagnosis of Vestibulotoxicity
V. Prevention of Vestibulotoxicity
VI. Treatment of Vestibulotoxicity
VII. References
Imbalance caused by drug-induced damage to the vestibular system ("vestibulotoxicity") is a significant cause of morbidity and mortality. Vestibulotoxicity can lead to limited mobility and social isolation, falls, injury, and death (Rogers 2011). Unlike hearing loss, imbalance cannot be treated with an implant. Ototoxic medications may more commonly affect balance function than auditory function (Handelsman 2017). Degree of hearing loss does not correlate with degree of vestibular damage (Handelsman 2017).
Vestibular anatomy and physiology

The inner ear’s *semicircular canals* respond to head rotations and *otolith organs* respond to head tilt.

Cilia projecting from thousands of “hair cells” in each inner ear respond by bending in opposite directions. The difference between the ears corresponds to the amount of rotation or tilt.

The brain uses this information to move the eyes to compensate for head movement (the “vestibulo-ocular reflex”) and to help maintain postural stability.

If the hair cells or the neurons leading from the hair cells to the brain are damaged, the inner ear is less sensitive to rotations or tilts. This reduces visual acuity during head movements and causes imbalance. Asymmetric damage leads to a sensation of rotation (vertigo).
Vestibulotoxic medications

Many aminoglycoside antibiotics, especially gentamicin, tobramycin, and streptomycin, are ototoxic (DiSogra 2019)

Aminoglycosides are commonly used in subacute bacterial endocarditis, sepsis, cystic fibrosis, non-tuberculous mycobacterial infections, and multi-drug-resistant bacterial infections

Some antineoplastic agents, such as cisplatin or carboplatin, may also be vestibulotoxic (Prayuenyong 2018)(Baguley 2020)

Very limited evidence links vestibular loss to the use of loop diuretics, macrolide antibiotics, and arsenic-based antineoplastic agents
Diagnosis of vestibulotoxicity (Handelsman 2018)

Patient symptoms are NOT reliable indicators.

- Patients may attribute their disequilibrium to their disease itself, other medications, or deconditioning whereas very sick patients are often bedridden and unable to perceive any imbalance.
- Patients may have severe symmetric bilateral loss despite a reassuring lack of vertigo.
- The brain may compensate somewhat, masking the true extent of vestibular loss.

Serum drug levels are NOT correlated with vestibulotoxic effects.
Diagnosis of vestibulotoxicity (Handelsman 2018)

Bedside tests:
- Head impulse (or “head thrust”)—do patient’s eyes keep up when moving head rapidly?
- Dynamic visual acuity—can patient can read eye chart while moving head?
- Romberg—can patient stand on an unstable surface?

Laboratory tests:
- Video head impulse
- Caloric
- Rotational chair
- Vestibular-evoked myogenic potential
Prevention of vestibulotoxicity

Use of other medications, when possible

Regular monitoring of function (Rogers 2011; Handelsman 2018). This is often done with bedside dynamic visual acuity testing, where the patient reads an eye chart while moving the head side to side. A loss of more than three lines of acuity may indicate vestibular damage.

Substitution of second-line therapy when needed

Use of chemoprotective drugs such as antioxidants (experimental)

Careful pre-dosage counseling as to possible side effects and encouraging attention to development of imbalance during treatment (Leis 2015)
Treatment of vestibulotoxicity

Vestibular damage rarely recovers spontaneously
Physical therapy is the mainstay of treatment (Meldrum 2019)
 Recalibrates brain to reduced vestibular input, increasing sensitivity and restoring normal reflexive eye movements
 Enhances use of other balance-related sensory inputs, such as vision and proprioception
Vestibular prosthesis (currently in human trials) (van de Berg 2020)
Genetic or chemical therapies to reconstitute vestibular hair cells (experimental) (Forge 2020)
Citation

Reuse/Redistribution of this powerpoint is permitted with proper recognition of VA RR&D NCRAR. Cite the powerpoint as:

References

Forge A, Jagger DJ, Gale JE. Restoring the balance: regeneration of hair cells in the vestibular system of the inner ear. Current Opinion in Physiology 2020, 14:35–40

Handelsman JA, Nasr SZ, Pitts C, King WM. Prevalence of hearing and vestibular loss in cystic fibrosis patients exposed to aminoglycosides. 2017; 52:1157-1162

Leis JA, Rutka JA, Gold WL. Aminoglycoside-induced ototoxicity. 2015 CMAJ, January 6, 2015, 187(1)

Meldrum D, Jahn K. Gaze stabilisation exercises in vestibular rehabilitation: review of the evidence and recent clinical advances. J Neurol 266:11-18 2019

