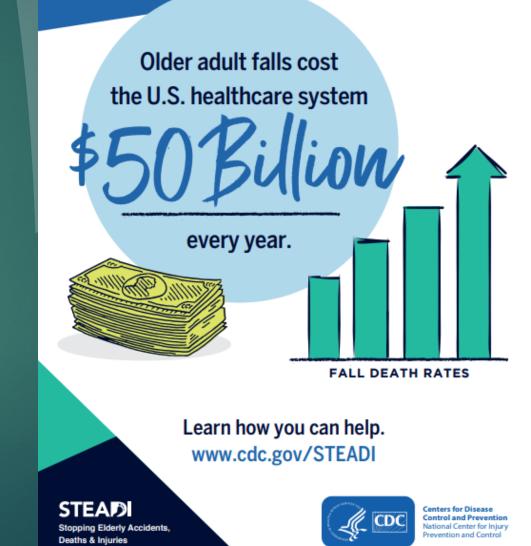
The relationship between hearing aid use and falls in older adults with sensorineural hearing loss

LAURA CAMPOS, AUD, PHD, CCC-A DEPARTMENT OF OTOLARYNGOLOGY – HEAD & NECK SURGERY UNIVERSITY OF COLORADO ANSCHUTZ MEDICAL CAMPUS


Overview

- Background of fall significance and review literature on hearing aid use and fall risk
- Aims and study design/methods
- Results: differences in fall prevalence and fall-risk by hearing aid use
- Discussion: Conclusions, limitations, future research

Fall statistics

- Every second of every day, an older adult falls
 - ▶ 1 in 4 over the age of 65 fall each year
- Falls are the number one cause of TBIs and hospitalization in the elderly
- Falls are more costly to the healthcare system than smoking or obesity (\$50 billion annually)

Prevent Falls and Reduce Healthcare Spending

demographic

Socio

Systems

Diseases

Risk Factors for Falls

Extrinsic

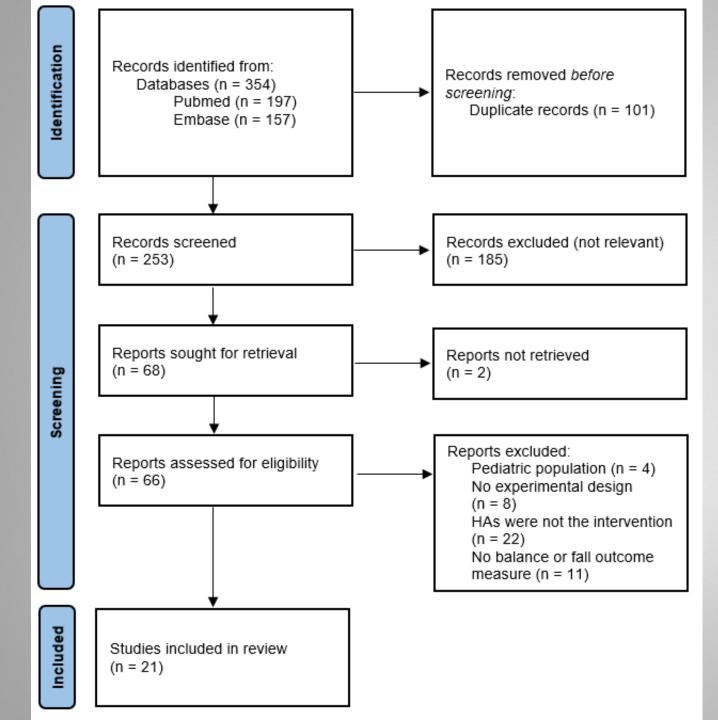
Environmental

Medications

Adapted from Ambrose, Paul, and Hausdorff (2013) and S. R. Lord, Menz, and Sherrington (2004).

Hearing loss as a risk factor for falls

- Lin & Ferrucci (2012) found a dose-response relationship that for every 10 dB of hearing loss, risk of falling increased 1.4-fold.
- Meta-analysis by Jiam et al (2016) found older adults with hearing loss had 2.4 times the risk of falls than those without hearing loss.


Study Source	Sample Size	Odds Ratio (95% CI)							
Assantachai	1043	1.97 (1.35-2.86)		Assantachai	1 -				
Bumin	33	9.64 (1.63-56.9)		Bumin	-		•		
Girard	298	1.97 (1.001-3.88)		Girard		-			
Kulmala	428	1.3 (0.89-1.92)		Kulmala	-				
Lee	173	0.88 (0.38-2.04)		Lee					
Lin	2017	1.4 (1.3-1.5)		Lin	•				
Lopez - F	3014	1.45 (1.08-1.93)	Study	Lopez - F	-				
Lopez - M	2340	1.38 (1.08-1.78)	S	Lopez - M	•				
Purchase-Helzner	9704	1 (0.88-1.15)		Purchase-Helzner	•				
Sihvonen	79	17.14 (1.78-165.6)		Sihvonen	-			•	
Skalska	4920	1 (0.88-1.5)		Skalska	•				
Stam	1865	2.5 (1.49-4.19)		Stam	-				
Tobis	47	1.42 (0.62-3.26)		Tobis	-	-			
				Pooled overall	•				
				-5	0	5	10	15	20
						Odd	s Ratio		

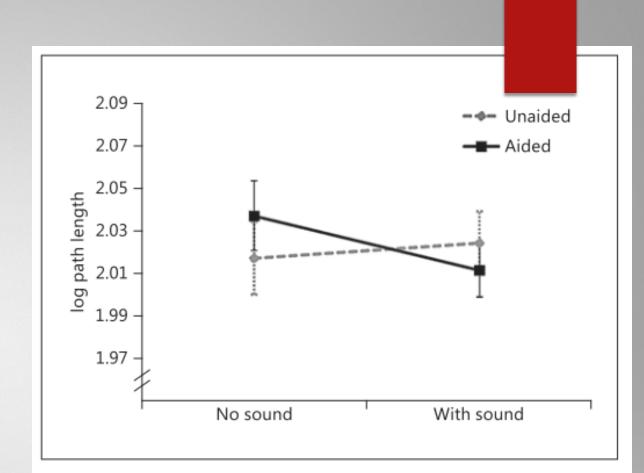
Proposed Mechanisms

- Concomitant medical factors that degrade both the auditory and vestibular systems
- Increased cognitive load of communication reducing overall executive function capacity to maintain balance/avoid falls
- Loss of auditory cues necessary for accurate spatial orientation

Research Question

- 2 of the 3 theories are directly addressed/corrected by hearing aids (reduction in cognitive load, improved access to auditory spatial landmarks).
- Does use of hearing aids reduce the likelihood of a fall?

Systematic Literature Review


Literature Review

21 studies included, can be separated based on outcome measure assessed

- Measures of postural sway/stability
- Measures of gait
- ► Falls

Postural Sway/Stability

- 7 studies have assessed postural sway with HI individuals aided and unaided
 - 5 have found significantly better performance when aided
 - 1 found only HI individuals with vestibular dysfunction performed better aided
 - 1 found no significant difference

Fig. 4. The effect of sound environment in aided and unaided conditions on the mean log path length in 19 hearing aid users. Data points represent the mean log path length for all 4 standing conditions in that sound environment and aided condition. Error bars are displayed as ± 2 standard residual errors. There was no significant effect of sound environment or aided condition (p > 0.05), but there was a significant interaction (p = 0.048).

Gait

- Only 3 studies looked at gait velocity, stride length, TUG or steps to regain balance
 - One was a case series which showed better performance with device on than off
 - One did not find any aided vs unaided differences
 - One found unaided individuals had to take more steps to regain balance

Hearing aid use and falls

Systematic literature review found 9 studies that directly evaluated the association between hearing aid use and fall risk

- 4 found that hearing aid users had significantly higher odds of experiencing a fall
- ▶ 3 did not find significance in the relationship

2 found hearing aid users had significantly lower odds of experiencing a fall

Studies finding hearing aids increase odds of falling

Study	Study design	Participants	Outcome measure	Conclusion
Sprince et al. (2003)	Case/control cross- sectional survey	6,999 Iowa farmers (mean age 50.1)	Self-reported fall-related farm injury in past 12 months	Difficulty hearing normal conversation (even if wearing a hearing aid) related to fall risk OR 1.82 (95% CI: 1.07-3.08)
Chu et al. (2004)	Case/control cross- sectional survey	448 cases who experienced a proximal humerus fracture and 2,023 controls (age range 45-85+)	Incident proximal humerus fractures over age 45 between 1996- 2001	Fall-related risk factor: hearing aid used almost always OR 1.82 (95% CI: 1.08-3.08)
Gopinath et al. (2016)	5-year longitudinal cohort study	1,478 Australians over the age of 55	e Self-reported incident falls in the 12 months prior to study visits	Those who reported hearing aid use had higher odds of falling OR 1.76 (95% CI: 1.1-2.84)
Criter and Gustavson (2020)	Case/control cross- sectional survey	28 community dwelling older adults (mean age 70.6), 28 audiology clinic patients without hearing aids (mean age 71.5), 18 audiology clinic patients with hearing aids (mean age 72.9)	Self-reported falls in the past 12 months and unaided HHIE scores	Audiology patients with HAs reported more falls (p=0.003) than either of the other 2 groups.

Studies finding no significant relationship

Study	Study design	Participants	Outcome measure	Conclusion
Kamil et al. (2016)	11-year longitudinal cohort study	2,000 total participants between 70-79, 407 with HL (137 HA users, 270 non-users).	Self-reported falls in the past 12 months	For those with moderate or greater HL, rates of experiencing a fall did not differ between HA users and non-users (p=0.22)
Powell et al. (2021)	Pooled cross-sectional analysis of 20-year national survey	152,872 (8391 HA users) individuals aged 50+ who completed the National Health Interview Survey between 1997-2017	Self-reported falls in the past 3 months, falls due to dizziness in the past 3 months	Hearing aid use did not affect odds of experiencing a fall OR 1.01 (95% CI: 0.55-1.86) or odds of experiencing a fall due to dizziness OR 1.55 (95% CI: 0.82-2.93)
Riska, Peskoe, Kuchibhatla, et al. (2021)	Pooled cross-sectional analysis of 5-year national survey	8,091 individuals age 40+ who completed the National Health and Nutrition Examination Survey (NHANES)	Self-reported falls in the past 12 months	Greater severities of hearing loss was correlated with increased fall risk but hearing aid use did not modify this relationship (p=0.72)

Studies finding hearing aids reduce odds of falling

Study	Study design	Participants	Outcome measure	Conclusion
Mahmoudi et al. (2019)	8-year longitudinal retrospective cohort study of health insurance claims data	114,862 participants with HL (mean age 79.8) 14,109 HA users and 100,753 non-users)	Incident injurious falls by ICD code	HA users had lower risk of injurious fall than non-users (HR= 0.87; 95% CI: 0.80-0.93)
Tiase et al. (2020)	1-year retrospective case/control study	6,668 inpatients 18+ with hearing loss (1,736 HA users, 4,932 non-users)	Fall occurring during hospitalization	Patients who reported HL were more likely to experience a fall OR 1.74 (95% CI: 1.46-2.07) Patients without HA usage had even higher risk of falls OR 2.7 (95% CI: 1.64-4.69) HA users were not more likely than normal hearing controls to experience a fall (p=0.889)

Gaps in the Literature

- Using measures of postural stability, gait or fractures as a proxy for falls
- Focus on hearing loss/falls association—HA use was secondary analysis and underpowered
- None collected data about frequency and duration of hearing aid use (2 stratified never, half the time, always)
- Several compared hearing aid users to normal hearing peers rather than individuals with hearing loss.

Aim 1

Compare fall metrics in hearing aid users to non-users.

- Primary outcome measure: prevalence of falls as self-reported via survey (question 1 of Fall Risk Questionnaire).
- Secondary outcome measure: proportion of each group considered a fall risk (>3 on FRQ).

Examine the relationship between specific covariates (risk factors) and fall outcomes.

Degree of hearing loss, duration of hearing loss and duration of hearing aid use as well as medical comorbidities (medication usage, diabetes, stroke, cognitive decline) are all potentially associated with the hearing aid/fall association

Study Design

A cross-sectional study surveying individuals with hearing loss about their fall history and hearing aid use.

Population

Inclusion criteria:

- Individuals aged 60+ with documented bilateral SNHL
- Cognitive and linguistic capacity to complete questionnaire

Exclusion Criteria:

- Knee/hip replacement in past year
- Non-ambulatory individuals or those requiring prosthetics to ambulate
- Actively taking meclizine
- Individuals with a vestibular dysfunction diagnosis
- Those with degenerative neurological disease (e.g., Parkinson's)
- Individuals who are legally blind

Methods

- University of Colorado Hospital Audiology department EHR queried for individuals who were 60+ with diagnosis code for bilateral sensorineural hearing loss
- Email invitation sent to participate in REDCap Survey
- Following IC and survey completion, EHR was reviewed for degree of hearing loss, medical comorbidities and medication usage

Survey Composition

- Fall Risk Questionnaire (FRQ)
 - ► 4 "yes" answers = fall-risk
- Dizziness Handicap Inventory-Screener
- 6 additional questions related to hearing aid usage and duration

Fall Risk Questionnaire (FRQ)

Yes	No	1. I have fallen in the last 6 months.
Yes	No	2. I am worried about falling.
Yes	No	3. Sometimes, I feel unsteady when I am walking.
Yes	No	4. I steady myself by holding onto furniture when walking at home.
Yes	No	5. I use or have been advised to use a cane or walker to get around safely
Yes	No	6. I need to push with my hands to stand up from a chair.
Yes	No	7. I have some trouble stepping up onto a curb.
Yes	No	8. I often have to rush to the toilet.
Yes	No	9. I have lost some feeling in my feet.
Yes	No	10. I take medicine that sometimes makes me feel light-headed or more tired than usual.
Yes	No	11. I take medicine to help me sleep or improve my mood.
Yes	No	12. I often feel sad or depressed.
Develo	ped by I	Rubenstein et al. (2011).

If you answered YES to question 1, approximately how many falls have you had in the past 6 months?

Approximately how many years have you had hearing loss?

Do you wear hearing aids? Yes No

If yes, on average, how many hours do you wear them each day?

How many years have you had hearing aids?

If you have experienced a fall in the past 6 months, were you wearing your hearing aids when you fell? Yes No

Medication classification: ARS

- Rudolph et al. showed that higher ARS values were associated with higher risk falls, dizziness and confusion in adults over the age of 65
- Provides better detail than just the number of medications an individual is prescribed

Magellan Anticholinergic Risk Scale

BRAND Elavil® Asendin

Cogentin® Respa-BR® Arbinoxa® Chlor-Trimeton Thorazine® Tavist®

> Anafranil[®] Clozaril[®]

Enablex[®] Norpramin Bentyl[®]

Dramamine Benadryl® Sineguan®

> Urispas¹ Robinul⁴

Atarax® Anaspaz® Tofranil® Antivert®

Cantil[®] Pamine[®]

Pamelor⁴ Zyprexa[®] Norflex[®]

Ditropan® Trilafon® Phenergan® Pro-Banthine® Vivactil® Transderm Scop Mellaril® Navane® Zanaflex® Detrol® Stelazine®

Artane

Surmontil

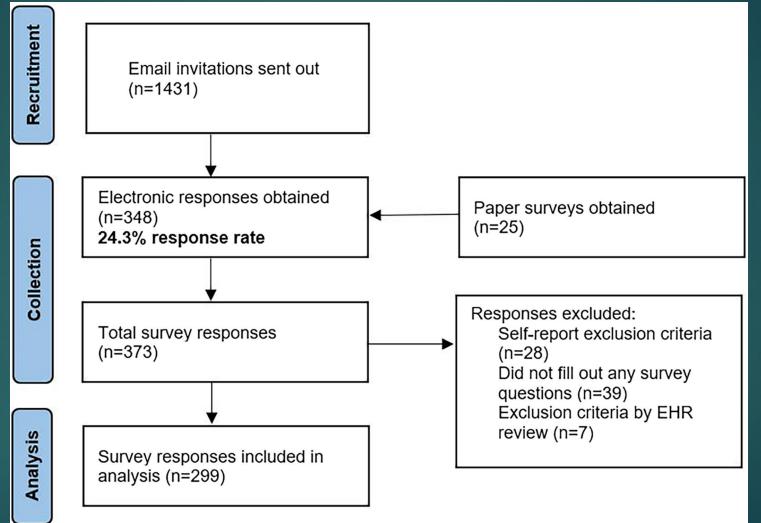
Sanctura

Trihexyphenidyl

Trimipramine

Trospium

1 POI	NT	2 POIN	TS	3 POIN
GENERIC	BRAND	GENERIC	BRAND	GENERIC
Alprazolam	Xanax®	Amantadine	Symmetrel®	Amitriptyline
Aripiprazole	Abilify*	Baclofen	Lioresal®	Amoxapine
Asenapine	Saphris*	Carbamazepine	Tegretol®	Atropine
Captopril	Capoten®	Carisoprodol	Soma®	Benztropine
Chlordiazepoxide	Librium®	Cetirizine	Zyrtec*	Brompheniramine
Chlorthalidone	Diuril®	Cimetidine	Tagamet*	Carbinoxamine
Clonazepam	Klonopin®	Clidinium & Chlordiazepoxide	Librax®	Chlorpheniramine
Clorazepate	Tranxene®	Cyclizine	Cyclivert*	Chlorpromazine
Codeine		Cyclobenzaprine	Flexeril®	Clemastine
Diazepam	Valium®	Cyproheptadine	Periactin®	Clomipramine
Digoxin	Lanoxin®	Disopyramide	Norpace®	Clozapine
Dipyridamole	Persantine*	Fluphenazine	Prolixin®	Darifenacin
Famotidine	Pepcid®	Loperamide	Diamode*	Desipramine
Fentanyl	Duragesic®	Loratadine	Claritin®	Dicyclomine
Fluoxetine	Prozac®	Loxapine	Loxitane®	Dimenhydrinate
Flurazepam	Dalmane®	Meperidine	Demerol®	Diphenhydramine
Fluvoxamine	Luvox®	Methocarbamol	Robaxin®	Doxepin
Furosemide	Lasix®	Oxcarbazepine	Trileptal®	Flavoxate
Haloperidol	Haldol®	Pimozide	Orap*	Glycopyrrolate
Hydralazine	Apresoline*	Prochlorperazine	Compazine*	Hydroxyzine
Iloperidone	Fanapt ^e	Pseudoephedrine	Sudafed*	Hyoscyamine
Isosorbide	Imdur®	Quetiapine	Seroquel®	Imipramine
Mirtazapine	Remeron*	Trimethobenzamide	Tigan®	Meclizine
Morphine	MS Contin [®]			Mepenzolate
Nifedipine	Procardia*			Methscopolamine
Nizatidine	Axid ^e	KEY		Nortriptyline
Oxycodone	Oxycontin*			Olanzapine
Paroxetine	Paxil®	1 Point = low risk of an	nticholinergic	Orphenadrine
Prednisone	Deltasone®	Side effects		Oxybutynin
Quinidine	Quinaglute®			Perphenazine
Ranitidine	Zantac [®]	2 Points = moderate r	isk of	Promethazine
Risperidone	Risperdal®	Anticholinergic side effe	ects	Propantheline
Temazepam	Restoril®			Protriptyline
Tramadol	Ultram [®]	3 Points = high risk of		Scopolamine
Trazodone	Desyrel®	Anticholinergic side effe	ects	Thioridazine
Triamterene	Dyrenium*			Thiothixene
Warfarin	Coumadin®			Tizanidine
Ziprasidone	Geodon®			Tolterodine
				Trifluoperazine
				Well- second and total


Hearing aid use groups

Any use vs none

Consistent users vs inconsistent/no use
 Consistent HA users reported at least 4 hrs/day of average wear time for 1 year or longer

So for analysis we have 2 outcomes (fall prevalence and fall-risk) and 2 interventions (any hearing aid use, consistent hearing aid use)

Data collection

Descriptive statistics of all participants and differentiated by consistent vs inconsistent/non-use

	All participants	Consistent users	Inconsistent/non-users	
Characteristic	(<i>n</i> = 299)	(n = 181)	(n = 118)	<i>p</i> -value
Demographics				
Age	73.8 (6.7)	74.8 (6.6)	72.5 (6.6)	0.004
Female sex	51.2%	52.8%	50.9%	0.74
White race	96.1%	97.1%	94.7%	0.38
Fall characteristics				
Any fall ^a	26.4%	19.3%	37.3%	<0.001
Fall-risk ^a	31.3%	24.0%	42.4%	<0.001
Hearing characteristics				
Any HA use ^a	68.8%	-	-	-
Consistent HA use ^a	60.5%	-	-	-
Hearing loss severity (dB)	35.9 (15.3)	40.7 (15.4)	28.7 (11.7)	<0.001
Hearing loss asymmetry (dB)	6.6 (11.8)	7.1 (11.6)	5.8 (12.1)	0.39
Hearing loss duration (years) ^a	12.2 (14.0)	14.7 (15.0)	8.0 (11.1)	<0.001
Comorbidities				
ARS score	1.1 (1.7)	1.1 (1.7)	1.2 (1.7)	0.40
Diabetes	15.8%	14.8%	17.3%	0.58
Stroke	4.7%	7.1%	0.9%	0.02
Cognitive decline	2.1%	1.8%	2.8%	0.58
Previous falls	3.2%	3.0%	3.7%	0.74
Positional dizziness ^a	11.8	11.0%	12.9%	0.62

Abbreviations: ARS, anticholinergic risk scale; dB, decibel; HA, hearing aid.

^aIndicates any characteristic collected by participant self-report. *p*-values are for Welch's *t*-tests (continuous variables) and chi-squared tests (categorical variables) between consistent and inconsistent/non users, significant *p*-values are in bold.

Collected covariates by fall-status and fall-risk classification

Characteristic	No falls (<i>n</i> = 220)	Any falls (<i>n</i> = 79)	p-value	Not at fall risk ($n = 197$)	Fall risk (n = 92)	<i>p</i> -value
Demographics						
Age	74.3 (6.8)	72.4 (6.4)	0.03	74.0 (6.5)	73.4 (7.0)	0.46
Female sex	47%	50.6%	0.57	53.8%	47.8%	0.34
White race	97.0%	94.9%	0.4	96.4%	95.6%	0.96
Hearing characteristics						
Any HA use ^a	72.7%	56.9%	0.01	74.5%	54.8%	<0.001
Consistent HA use ^a	66.4%	44.3%	<0.00	66.6%	46.2%	<0.001
Hearing loss severity (dB)	35.9 (15.3)	35.9 (15.1)	0.99	35.9 (15.9)	35.9 (13.7)	0.99
Hearing loss asymmetry (dB)	5.9 (9.2)	8.4 (16.7)	0.2	6.8 (12.7)	6.0 (9.6)	0.55
Hearing loss duration (years) ^a	12.3 (14.6)	11.9 (12.3)	0.8	12.2 (14.8)	11.9 (12.2)	0.85
Comorbidities						
ARS score	1.0 (1.5)	1.6 (2.0)	0.03	0.9 (1.5)	1.7 (2.0)	0.001
Diabetes	14.8%	18.4%	0.46	12.8%	22.2%	0.04
Stroke	3.6%	6.3%	0.36	4.3%	5.6%	0.64
Cognitive decline	1.8%	2.5%	0.74	1.6%	3.3%	0.36
Previous falls	1.4%	7.6%	0.007	1.6%	6.7%	0.03
Positional dizziness ^a	15.2%	10.8%	0.27	5.0%	26.9%	<0.001
Use glasses ^a	78.7%	70.5%	0.14	76.5%	76.1%	0.94

Aim 1: How does fall prevalence/risk vary by hearing aid use?

Abbreviations: ARS, anticholinergic risk scale; dB, decibel; HA, hearing aid.

^aIndicates any characteristic collected by participant self-report. Continuous variables are shown by their means (standard deviations) and categorical variables are shown by proportion. *p*-values are for Welch's *t*-tests (continuous variables) and chi-squared tests (categorical variables), significant *p*-values are in bold.

Aim 2: how do fall risk factors affect fall outcomes?

- Logistic Regression Modelling
- Model 1: Crude/Unadjusted
- Model 2: Multivariate LR adjusted by common risk factors for falls (decided a priori)
 - Adjusted for age, sex, hearing loss severity (PTA) and medications (ARS score)
- Model 3: Forward Stepwise LR with all collected covariates

Model Summaries for Fall Prevalence

	Any HA use	Consistent HA use			
	Odds ratio (95% CI)	Odds ratio (95% CI)			
	(Referenced to no HA use)	(Referenced to no/ inconsistent HA use)			
Fall prevalence					
Unadjusted/ crude model	0.50 (0.29–0.85) p = 0.01	0.40 (0.24-0.68) p < 0.001			
Adjusted model ^a	0.48 (0.26–0.90) p = 0.02	0.35 (0.19-0.67) p < 0.001			
Stepwise model ^b	0.51 (0.28–0.93) p = 0.03	0.43 (0.24-0.77) p = 0.005			

Model Summaries for Fall Risk

	Any HA use	Consistent HA use			
	Odds ratio (95% CI)	Odds ratio (95% CI)			
	(Referenced to no HA use)	(Referenced to no/ inconsistent HA use)			
Fall risk					
Unadjusted/ crude model	0.42 (0.25–0.70) p < 0.001	0.43 (0.26-0.71) p < 0.001			
Adjusted model ^a	0.36 (0.19–0.66) p < 0.001	0.32 (0.12-0.59) p < 0.001			
Stepwise model ^c	0.41 (0.22–0.76) <i>p</i> < 0.004	0.38 (0.21–0.69) p < 0.001			

Conclusions

Consistent hearing aid use is associated with a significantly lower <u>odds of falling</u> (between 45-65% lower), even after adjusting for age, medications, dizziness and previous falls

Consistent hearing aid use is associated with a significantly lower <u>odds of being a fall-risk</u> (between 30-65% lower), even after adjusting for age, medications, HL severity, dizziness and previous falls

Discussion:

- Fallers were younger, but had higher ARS scores (more med usage), reported more dizziness and a higher proportion of previous falls
- Hearing aid users were older and had greater degrees of hearing loss (which should increase their fall risk), but still reported significantly fewer falls than non-users (21.95% vs 36.17%).
- Many variables which should be risk factors for falls were not significantly different
 - Female sex, hearing loss severity, cognitive decline
- All models showed stronger associations for consistent hearing aid users suggesting greater reduction in risk with greater amounts of hearing aid use.

Discussion: are HA users just healthier individuals?

- HA users were older, had more hearing loss, and had higher rates of stroke
- No difference in medication usage (ARS), diabetes, cognitive decline or previous falls
- Non-users did report more dizziness

Limitations

Association not causation
Generalizability
Selection and recall bias

self-reported outcome measures

Unmeasured covariates

Future Research

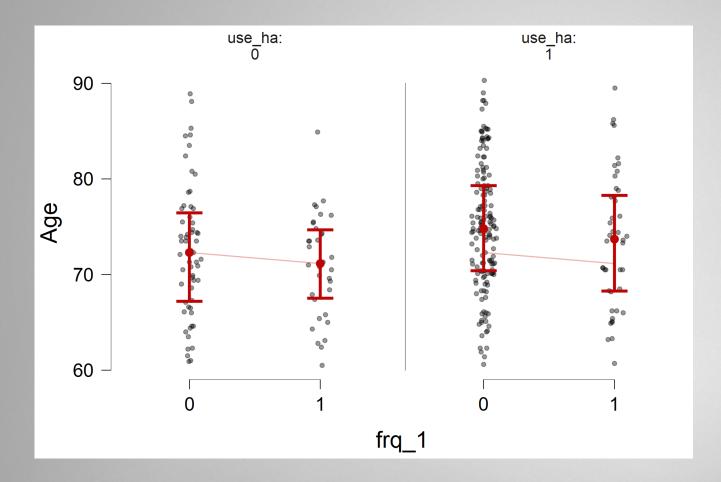
Which mechanism(s) are contributing to the observed relationship?

- Longitudinal studies and/or pre-post studies
- Include other outcome measures of postural stability and vestibular and cognitive function

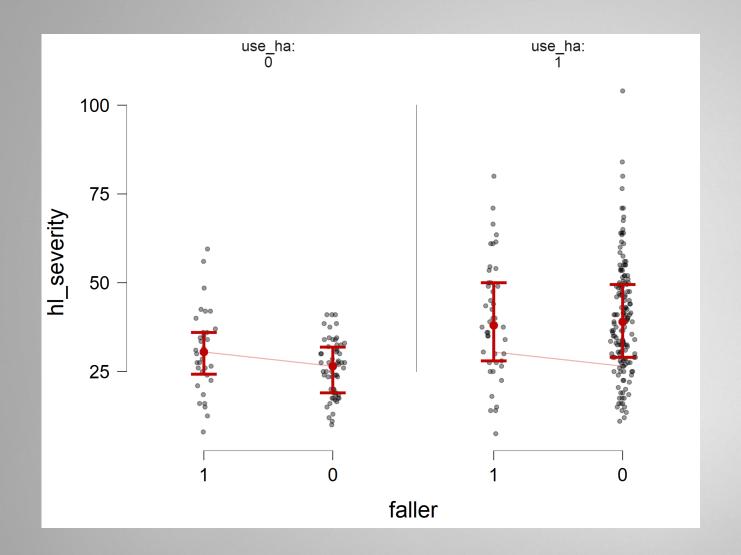
RCT: randomly assign HAs as intervention and compare to fall rates in controls

- Can draw stronger conclusions
- Reduces chance of unmeasured covariates affecting results

Implications for Clinical Practice


Audiologists

- Supports the recommendation that a potential benefit to obtaining hearing aids is a reduced probability of falling
- Encourage consistent hearing aid use with the aim of patients wearing their hearing aids for at least 4 hours each day


Fall Prevention Programs

- Add hearing loss to the list of potentially modifiable risk factors for falls
- Should consider adding a hearing screening to assessment battery (if not already included) and refer those that do not pass to an audiologist
- Counsel on the potential benefits of addressing any identified hearing loss regarding fall risk reduction

Questions?

Age separated by HA status

HL severity separated by HA status

Falls by glasses use

	Contingency Tables							glass	ses		-
		gla	sses		-	frq_fa	llrisk	0	1	Total	_
	frq	_1 0	1	Total		0		47	153	200	
	0	46	170	216	_	1		22	70	92	
	1	23	55	78		Total		69	223	292	
	Total	69	225	294							•
					•						
C	Chi Or	used Tests				Chi-Squ	ared Tes	sts			
		uared Tests						Value		df	р
		Val	ue o	df	р			0.000	•	4	0.020
	X ²		141	1	0.143	X² N		0.000		1	0.938
	N		294					201			
					Wald	95% Confidence interval (odds ratio scale)					
Standard E	rror	Odds Ratio	Z	Wald	d Statistic	df	р	Low	er bound	Upper	bound
1.56	51	3.861	0.865		0.749	1	0.387		0.181	82	2.357
0.31		0.803	-0.693		0.481	1	0.488		0.433		1.492
0.28	30	0.995	-0.016	2	.716e –4	1	0.987		0.575		1.724
0.02	22	0.965	-1.597		2.550	1	0.110		0.924		1.008
0.07	7	1.186	2.210		4.885	1	0.027		1.020		1.380
0.00)9	1.007	0.776		0.603	1	0.438		0.989		1.026
class 1.											

Note. frq_1 level '1' coded as class 1.

(Intercept)

hl_severity

glasses

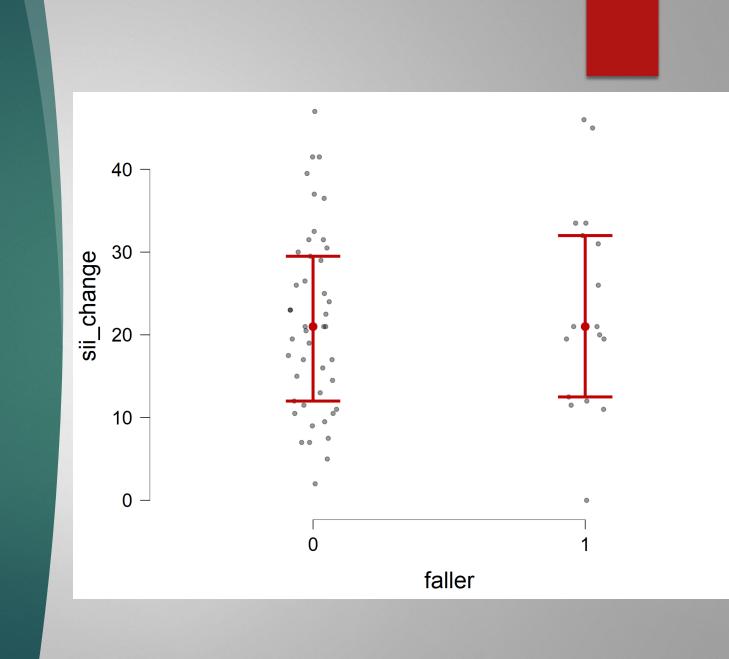
sex

Age

ars

Estimate

1.351 -0.219


-0.005

-0.035

0.171

0.007

Measure of HA benefitchange in SII

