Using Brain Imaging Techniques to Find the Tinnitus Signal

TATATA STREET

In the second and a first second statement of the second second second second second second second second second

Fatima T. Husain, PhD

Dept. of Speech and Hearing Science Neuroscience Program Beckman Institute for Advanced Science and Technology

Agenda

- Brain Imaging
 - Functional Magnetic Resonance Imaging
- Measuring tinnitus severity
- Use of brain imaging in tinnitus
 - Objective biomarkers
 - Task-based, Rest-based
 - Neural Networks
 - Auditory network
 - Attention network
 - Emotion processing network
 - Default mode network
 - Replicability, robustness of measures, diagnosis

BRAIN IMAGING

Tools to study the brain: Spatial and Temporal Resolution

Gazzaniga, Ivry & Mangun, Cognitive Neuroscience

Brain Imaging Studies

- 1. Provide information about neural mechanisms subserving both tinnitus generation and persistence
- 2. Objective measures of a subjective disorder in a heterogeneous population
- 3. Estimate effect of interventions
- 4. Provide information necessary to develop new therapies

The "Scanner"

MRI vs. fMRI

MRI studies brain <u>anatomy</u>.

Functional MRI (fMRI) studies brain <u>function</u>.

Imaging Structure in the Brain

Imaging Function in the Brain

Stimulus to BOLD

TRENDS in Neurosciences

Source: Arthurs & Boniface, 2002, *Trends in Neurosciences*

BOLD = Blood oxygen-level dependent response

BOLD Time Course

Activation Statistics

Functional images ROI Time fMRI ~2s Course Signal (% change) Condition Time Condition 1 **Statistical Map** superimposed on anatomical MRI Condition 2 Time **Region of interest (ROI)** ٠. ~ 5 min

Reminder...

NEURAL NETWORKS

Auditory Network

Ascending auditory pathways

o 2001 Sinauer Associates, Inc.

Emotion processing network

Attention Network

TINNITUS SEVERITY

Tinnitus is known as the conscious perception of sound in the absence of an external source

Percept Reaction

- Pitch Sleep disturbance
 - Loudness Concentration
 - **Duration** Communication
- Laterality Stress
- Masking Anxiety
 - Depression
 - Suicidal ideation

...reaction to tinnitus

ASSESSING TINNITUS SEVERITY

Questionnaire name	Authors and year	Number of items	Response options for each item
Tinnitus Questionnaire	Hallam et al. (1988)	34	3 levels: true, partly true, not true
Tinnitus Handicap Questionnaire	Kuk et al. (1990)	27	100 levels: 100 = strongly agree, 0 = strongly disagree
Tinnitus Severity Scale	Sweetow and Levy (1990)	15	4 levels: wording of response options varies between items
Subjective Tinnitus Severity Scale	Halford and Anderson (1991)	16	2 levels: yes/no
Tinnitus Reaction Questionnaire	Wilson et al. (1991)	26	5 levels: not at all, a little of the time, some of the time, a good deal of the time, almost all the time
Tinnitus Severity Grading	Coles et al. (1992)	9	5 levels: wording of response options varies between items
Tinnitus Severity Index	Meikle (1992) and Meikle et al. (1995)	12	5 levels ^b : never, rarely, sometimes, usually, always
Tinnitus Handicap Inventory	Newman et al. (1996)	25	3 levels: yes, sometimes, no
Intake Interview for Tinnitus Retraining Therapy	Jastreboff and Jastreboff (1999)	12	7 items: 3 levels (always, sometimes, never); 2 items: 100 levels: 0–100% of time; 3 items: 0–10 numeric scale

Table 1. Nine widely used tinnitus questionnaires^a

^aEach of the nine questionnaires is cited in a separate bibliographic entry (see References).

^bOriginal version of Tinnitus Severity Index used more complex response options: six items had three levels, six items had four levels with wording of response options varying between items.

illinois.edu

Meikle et al., Progress in Brain Research, 2007

Tinnitus Handicap Inventory

- 3 point scale; yes = 4 points, sometimes = 2 points, no = 0 points.
- Maximum score of 100 points for 25 Questions
- Higher score, greater difficulty in functioning or handicap
- 3 subscales functional, emotional, catastrophic
- 0-16, no handicap
- 18-36, mild handicap
- 38-56, moderate handicap
- 58-100, severe handicap

Newman et al., 1996

Tinnitus Functional Index

- More sensitive to treatment effects
- 25 questions on the scale of 1-10
- Scoring: sum of all valid answers divided by number of questions with valid answers * 10 (TFI score within 0-100 range)
- 8 subscales: intrusive, sense of control, cognitive, sleep, auditory, relaxation, quality of life, emotional.
- 0-17: Not a problem
- 18-31: Small problem
- 32-53: Moderate problem
- 54-72: Big problem
- 73-100: Very big problem

Meikle et al., 2013

Table 2. Topics covered by the nine questionnaires in Table 1^a

Tinnitus topics or "dimensions"					
Sleep disturbance	9				
Intrusive, aversive nature of tinnitus					
Irritability, nervousness, stress, tension		8			
Reduced quality of life					
Cognitive difficulty: problems concentrating, difficulty focusing attention, 8					
mental confusion					
Difficulty relaxing: difficulty doing quiet leisure p	ursuits	7			
Interference with social interactions and activities	5	6			
Depression, feeling low, suicidal thoughts		6			
Anxiety, worry, panic	6				
Work interference	4				
Hearing difficulties attributed to tinnitus		4			
Anger, annoyance, frustration	4				
Feeling uncomfortable in quiet 4					
Reduced sense of control (feel insecure, helpless, desperate, unable to cope) 4					
Feeling tired: ill, fatigued	3				
Uncomfortable in noise, avoiding noise		3			
Distress, general unhappiness	2				
Ease of masking tinnitus by external sounds		2			
Frequency of complaining about tinnitus		2			

^aOmitted from list are topics mentioned in only one questionnaire: intermittency of tinnitus; worry that tinnitus may damage health; need for or use of medications for tinnitus; attitudes of others about tinnitus; tinnitus that is worse under stress; tinnitus has grown worse over years.

Meikle et al., Progress in Brain Research, 2007

But there are problems...

- No single questionnaire covers every dimension—each questionnaire omitted some dimensions
- All the questionnaires differ in regard to item format, scaling, and wording
- It is difficult to compare treatment effects obtained in different clinics
- No reliable psychoacoustic test of tinnitus

Neural correlates of severity?

- No objective measurement of tinnitus severity
- => use brain imaging
- Although there might not be consensus about how exactly to measure severity, we all agree patients reaction to tinnitus varies.
 - Mild to severe spectrum
- Neural correlates may complement selfreport
 - More objective

USING BRAIN IMAGING IN TINNITUS

Assessing tinnitus severity using fMRI

- Audition
- Emotion
- Attention
- Rest/sleep

Methods: Subject Groups

TIN: (mild)Tinnitus + hearing loss; bothersome tinnitus + hearing loss HL: hearing loss without tinnitus NH: normal hearing without tinnitus

Methods -Task based fMRI: Sparse Sampling

Methods - Rest based fMRI: Continuous Scanning

- Spontaneous fluctuations in the BOLD response
 - Fluctuations can be correlated to show coherent networks
 - 5-20 minute, continuous scanning with eyes open
 - DMN= default mode network, DAN = dorsal attention network, AUD = auditory network

Mnatini et al., 2007

Default Mode Network function

"Sentinel hypothesis"

- Monitor external environment
- "Internal mentation hypothesis"
 - Self-reflective actions—envisioning the future, theory of mind, autobiographical memory

Image from Greicius et al., 2009, Cerebral Cortex

Default mode and attention networks: anticorrelated

- Suppression of DMN during a task is important
 - Better suppression linked to better memory formation (Whitfield-Gabrieli and Ford, 2012, Annu Rev Clin Psychol)
 - Correlations between the networks negatively correlated with performance on working memory task (Hampson et al., 2010, Magn Reson Imaging)
- This relationship is disrupted outside of young healthy individuals
 - Connectivity within DMN is also disrupted

Images from Fox et al., 2005, PNAS

Resting State and Tinnitus

 Tinnitus is uniquely suited to being studied via the resting state than other disorders because the presence and awareness of tinnitus puts the participant in a non-resting state.

AUDITORY

Neural correlate of tinnitus – auditory cortex

- Is there hyperactivity in auditory cortices due to tinnitus?
 - Hyperactivity may be due to reduced inhibition and/or increased excitation

Effect of Hearing Loss

Husain et al., PLoS ONE, 2011

Effect of Tinnitus

Husain et al., PLoS ONE, 2011

Right Auditory Cortex

Effect of Tinnitus on Auditory Cortex in Attention Demanding Tasks

Husain et al., Brain Research, 2015

Processing Emotional Sounds (Mild Tinnitus)

I

Carpenter-Thompson et al., Brain Research, 2014

Processing Emotional Sounds (Severe Tinnitus)

Mild>Severe Tinnitus

Greater response In mild tinnitus

Carpenter-Thompson et al., 2015

Is there hyperactivity in auditory cortices?

- It's complicated
- No difference when comparing mild tinnitus to HL controls when discriminating sounds
- In those with mild tinnitus, greater activity in the auditory cortex when responding to affective sounds compared to neutral sounds (relative to severe tinnitus).
- Change in functional connectivity from auditory cortex to right parahippocampal gyrus

ATTENTION

Neural correlates of Tinnitus - attention network

- Does tinnitus cause deficits in behavior?
- Does tinnitus causes changes in attention network response?
- Are these changes modality specific?

Brain When Attending to Sounds – Differences in Neural Response, <u>But Not in Behavior</u>

Husain et al., PLoS ONE, 2011

No Behavioral Differences in Auditory or Visual tasks, Varying in Difficulty

Husain et al., Brain Research, 2015

AUDITORY TASKS: Neural Response

VISUAL TASKS: Neural Response

VISUAL TASKS: Neural Response

Neural correlates of attention

- Does tinnitus cause deficits in behavior?
 - Not for mild tinnitus for discrimination tasks
- Does tinnitus cause changes in attention network response?
 - Yes!
- Do these changes alter with task difficulty?
 - Yes
- Are these changes modality specific?
 - Yes
- Implications for treatments

EMOTION

Where does emotion processing happen?

- Periphery and central auditory pathways
- Limbic system
- Frontal cortex

Tinnitus and emotion processing...

Jastreboff, 1990

Neural correlates of emotion processing

- Does tinnitus cause deficits in emotional behavior?
- Does tinnitus cause changes in emotion network response?
- Are these changes only in the auditory modality or are they domain general?

Behavior in Mild Tinnitus

Task: Classify sounds as Pleasant, Unpleasant, Neutral

Carpenter-Thompson et al., Brain Research, 2014

Behavior in Mild & Severe tinnitus

The only behavioral difference was that the Mild group responded significantly faster to Pleasant sounds compared to the Severe group

Processing Emotional Sounds: Auditory cortex

Mild>Severe Tinnitus

Greater response In mild tinnitus

Carpenter-Thompson et al., 2016

Mild Tinnitus, Processing emotional sounds: Right Amygdala

NH(P>N)

NH(U>N)

Contrast Estimates and Error Bars Contrast Estimates and Error Bars Parameter Estimates at Parameter Estimates at 1.5 right Amygdala right Amygdala 0.6 1.0 0.4 0.5 0.2 0.0 0.0 -0.5 TIN (P>N) NH (P>N) HL (P>N) TIN (U>N) NH (U>N) HL (U>N)

Carpenter-Thompson et al., Brain Research, 2014

Response to emotional Sounds – Varies with Tinnitus Severity

Hyper-response of the amygdala in those with severe tinnitus and more engagement of the frontal cortex in those with mild tinnitus

Bilateral Amygdala

Mild > Severe tinnitus

Bilateral Frontal Gyri

Carpenter-Thompson et al., Brain Research, 2014 Carpenter-Thompson et al., PLoS ONE, 2015

Neural correlates of emotional processing

- Does tinnitus cause changes in behavior?
 - Not in classification, but in response times may vary with severity
- Does tinnitus cause changes in emotion network response?
 - Yes
 - Response varies with severity
- Are these changes only in the auditory modality or are they domain general?
 - Current study only about sounds
 - Golm et al., 2013 showed that reading sentences with tinnitusrelated (compared to neutral) content affected response of limbic and frontal regions.

Resting State Functional Connectivity (RS-FC)

Spontaneous fluctuations in the BOLD response that can be organized into coherent, spatially-correlated networks

illinois.edu

Images from Mantini et al, 2007

Attention

 Decreased connectivity between seeds in Dorsal Attention and Default mode networks and attention-related regions in mild tinnitus

gyrus (ips seeds)

Left precentral gyrus

Images from Schmidt et al., PLoS One, 2013

Interaction with Emotion

 Increased connection to limbic/emotion regions was seen in both auditory and attention networks in tinnitus

Left parahippocampus (only a trend vs HL) Right parahippocampus (fef seeds)

Images from Schmidt et al., PLoS One, 2013

Default Mode Network

• The default mode network is disrupted in tinnitus

Precuneus

Images from Schmidt et al., PLoS One, 2013

RS-FC findings in tinnitus

Blue: default mode network

Green: limbic

Red: auditory network

Orange: visual network

Purple: attention

a: Schmidt et al, 2013 b: Burton et al., 2012 c: Maudoux et al, 2012a d: Kim et al, 2012

From Husain and Schmidt, 2014

Eggermont and Roberts, Cell Tissue Res, 2014 Tinnitus: animal models and findings in humans.

RS-FC in tinnitus across studies

Kim et al,	Group ICA to extract auditory network, ROIs
2012	within auditory component
Burton et al,	
2012	Seed-based analysis (seed-to-seed, seed-to-voxel)
Wineland et	
al, 2012	Seed-based analysis (seed-to-seed, seed-to-voxel)
Maudoux et	
al, 2012a,	Connectivity graph analysis of auditory
2012b	component from group ICA
Schmidt et	
al, 2013	Seed-based analysis (seed-to-voxel)
	Regional mean functional connectivity strength
Ueyama et al,	(with and without effect autocorrelation
2013	coefficient)
Davies et al,	Group ICA to extract auditory network, ROIs
2014	within auditory component
Chen et al,	amplitude of low frequency fluctuations
2014	(spontaneous neural activity)
Chen et al,	voxel-mirrored homotopic connectivity
2015a	(interhemispheric functional connectivity)
Chen et al,	Regional homogeneity, region of interest
2015b	(connectivity)
Zhang et al,	
2015	Seed-based analysis (in left and right thalamus)

RS-FC in tinnitus across studies

	Duration	Severity	Clinical hearing loss		
	3.14 ± 4.60 years		normal hearing within tested		
Kim et al, 2012	(0.5-10)	????	frequencies		
Burton et al,	8.3 ± 1.9 SEM	53.5 ± 14.8 (38-	variable, normal to moderate-severe		
2012	years (0.5-30)	76) (THI)	(normal controls)		
Wineland et al,	10.8 ± 10.1 years	$9.58 \pm 6.41 \ (0-24)$	variable, normal to moderate-severe		
2012	(1-35)	(THI)	(normal controls)		
Maudoux et al,	7.64 ± 9.16 years	$43.5 \pm 20.4, 16-84$	variable, normal, most mild to		
2012a, 2012b	(1.75-33)	(THI)	moderate		
Schmidt et al,	16.83 ± 15.1	$8.33 \pm 6.76 \ (0-22)$	mild to moderately severe, matched		
2013	years (1.5-40)	(THI)	HL controls		
Ueyama et al,	50.8 ± 102.9	60.3 ± 27.8, 4-	variable, 13 normal, 11 mild to		
2013	months (3-400)	100 (THI)	moderate		
Davies et al,	15.5 ± 20.4 years	43.7 ± 1.32 (18.7-	mild to moderately severe, matched		
2014	(2-70)	68.4) (THQ)	HL controls		
		100.6 ± 73.4			
	41 ± 36.2 months	(17.41-278.15)			
Chen et al, 2014	(6-120)	(THQ)	normal hearing		
	34.3 ± 34.2				
Chen et al, 2015a	months (6-120)	41.3 ± 18.2 (THQ)	normal hearing		
	39.5 ± 33.7	103.5 ± 74.4			
Chen et al, 2015b	months	(THQ)	normal hearing		
	42.6 ± 41.4				
Zhang et al, 2015	months	41.4 ± 19.7 (THQ)	normal hearing		

So what's going on here?

- How does RS-FC differ in other tinnitus subgroups?
 Identify objective biomarkers of tinnitus subgroups?
 - Age? Severity? Lateralization? Time/cause of onset?
 Depression/anxiety? Genetics? Other comorbid factors?

Solution:

- Compare connectivity in the default mode network across tinnitus subgroups to identify potential biomarkers of tinnitus
 - Subgroups include tinnitus groups from previous work
 - Subgroups also include two additional groups with mild and moderate tinnitus from Carpenter-Thompson et al., 2015 (PLoS One)
 - Keep acquisition same as much as possible, same analytical technique

Demographics

	Recent onset tinnitus Long term tinnitus							
					MLTIN			
	NH	HL	MLTIN1	MRTIN	2	BLTIN		
# Subjects	15	13	12	13	18	16		
3T Siemens Magnet	Allegra	Allegra	Allegra	Allegra	Trio	Trio		
TIN severity (THI						33.4 ± 9.1		
score)	N/A	N/A	8.3 ± 6.8	15.7 ± 10.2	10.8±6	55.4 ± 5.1		
				>6 months,				
TIN duration	N/A	N/A	>1 year	< 1 year	>1 year	>1 year		
			Schmidt et					
			al., 2013;					
	Schmidt	Schmidt	Carpenter-	Carpenter-	Schmidt	Schmidt		
Relevant	et al.,	et al.,	Thomspon	Thomspon	et al.,	et al.,		
Publication(s)	2013	2013	et al., 2015	et a t ., 2015	2017	2017		
			M	ild tinnitus	Moderat	te tinnitus		

ANOVA results

One area of significance at p<0.05 FWE corrected: the precuneus.

episodic memory, consciousness, visuospatial memory, reflections on self

RS-FC connectivity across subgroups

10 DMN 10 DAN

Results

DMN: Individual beta-Values at (-10, -42, 48)

Conclusions

- Reduced correlation between the default mode network and the precuneus may indicate the presence of tinnitus
 - Tinnitus must be long-term (> 1 year) for this to manifest
 - Tinnitus severity may mediate the strength of this reduction

Putting it all together... What does it all mean?

Model of Severity & Habituation: Neural Response

Model of Severity & Habituation: Functional Connectivity

Cognitive Control of Emotion: Model of Severity & Habituation

Cognitive Control of Emotion

Image from "An information theory account of cognitive control", Fan, 2016

Model of Severity & Habituation

1. In those habituated to tinnitus:

- A. Frontal cortex (attention network) suppresses pre-potent response of amygdala (limbic network) and re-routes salience/emotional processing via insula and parahippocampus gyrus
- B. Default mode network is more coherent, but still not as intact as in those without tinnitus.

2. In those with more bothersome tinnitus:

- A. Amygdala is more responsive
- B. Default mode network is less coherent brain not at true rest
- C. Hypoactivity in auditory cortex

But are results replicable? Robust enough to be used as a diagnostic and prognostic tool?

REPLICATION AND DIAGNOSIS

Military and Civilian groups

Identify objective functional biomarkers of tinnitus severity using resting state functional connectivity and

Determine tinnitus subgroups using automated cluster analysis of resting state data and associate the subgroups with a set of behavioral and neural correlates

Replication of Default Mode Network Connectivity: Controls

Controls: Visit comparison of connectivity between the posterior cingulate and medial prefrontal cortex

Replication of Default Mode Network Connectivity: Tinnitus

Tinnitus Patients: Visit comparison of connectivity between the left posterior cingulate and medial prefrontal cortex

Schmidt et al., in prep

Summary

- Resting state functional connectivity appears to be replicable for both controls and participants reporting tinnitus
- Reliable and useful tool to objectively measure impact of tinnitus in the brain
- Over multiple studies and now multiple sites, we are beginning to understand the functional connections and disconnections in the neural networks underlying tinnitus

Objective diagnostic biomarkers of tinnitus

DIFFERENTIATING PATIENTS VS. CONTROLS

Cyclicity of fMRI data

- From the cyclicity analysis , it is possible to generate a matrix the defines 'leader-follower' relationships between two signals.
- A different way to look at "functional connectivity"

Group lead matrices

Controls

Certain ROIs have consistently strong leader-follower relationships, but did not differ between groups. Different patterns for patients and controls.

Classification

Partial Least Squares Discriminant Analysis

Method: PLS-DA (20 components) Accuracy: 78 % Unclassified: 135		Predicted Group	
		Normal Hearing	Tinnitus
True Group	Normal Hearing	73.0%	27.0%
	Tinnitus	17.4%	82.6%

- First such endeavor in tinnitus
- Both sensitivity and specificity
- Generalize to other conditions, traits

Zimmerman, Thomas, Baryshnikov, Husain, *in prep*

Conclusions...

- Finding invariant neural signatures of tinnitus
 - Varying across subgroups
- Validate the reliability of these signatures
- Develop automated programs to differentiate patients with subjective disorder and controls
 - Apply this to other conditions and states within subjects
- \Rightarrow Evaluate interventions
- \Rightarrow Develop new interventions

www.acnlab.com

- Support
 - UIUC- AHS/CHAD, Campus Research Board
 - Charitable Organizations: Tinnitus Research Consortium, American Tinnitus Association
 - Federal Agencies NIH, DoD
- Members of the Auditory Cognitive Neuroscience Lab
- Collaborators NIH, UIUC, U. of Iowa, Hearing Center Excellence, Wilford Hall Ambulatory and Surgical Center
- Volunteers!

