Hearing Loss and Informational Masking

Frederick J. Gallun, PhD
Research Investigator

Boston University Collaborators
Gerald Kidd
Christine Mason
Nathaniel Durlach
Barbara Shinn-Cunningham
H. Steven Colburn
Tanya Arbogast
Nicole Marrone
Virginia Best

Introduction to Informational Masking
- Informational Masking with Speech
- Release from Informational masking
- Hearing Impairment and Release from Informational Masking
- A Conceptual Model with Implications for Hearing Impaired Listeners and Future Work

The Ear as a Frequency Analyzer
Using brass spheres of various volumes to focus his auditory perception, Hermann von Helmholtz (1821-1894) was able to determine the spectral composition of a wide variety of musical sounds. His experience and his physiological investigations convinced him that the ear performs a spectral decomposition of the incoming sounds. Fletcher (1940) proposed a quantitative model based on the idea of peripheral filtering.

Most modern theories of auditory perception still start with a bank of bandpass filters. Masking the output of a band-pass filter implies that when a listener detects a tone of a certain frequency, the information used is essentially the output of a critical band filter.

Moore and Glasberg (1983) “Suggested formulae for calculating critical bands and excitation patterns,” JASA, 74(3) (Figure 3)
The critical band model predicts little effect of the distance of the maskers from the critical band frequency intensity

Critical Band

Masker

No masking predicted

No Masking predicted

Target

Masker

The critical band model predicts little effect of the number of maskers outside the critical band frequency intensity

Critical Band

Masker

No masking predicted

No Masking predicted

Target

Masker

Note that there would be some slight masking (and changes in masking) predicted in these cases due to changes in the energy falling in the "skirts" of the filter. The point is that these changes would be slight (probably only a few dB).

The simplest form of the Filter Bank model holds that masking is entirely predicted by the energy falling inside the critical band filter. This is simply not correct.

What is Informational Masking?

Durlach et al. (2003) suggested that informational masking at a given level, L, of the auditory system is any reduction in performance that cannot be predicted on the basis of current models of signal processing at level L.

As we learn more about how information is processed by the auditory system, the domain of informational masking will decrease.

What Do We Know About When Informational Masking Will Occur?

- Durlach et al. (2003) and Watson (2005) suggested that there are two factors that lead to informational masking:
 - Target-Masker Similarity, which leads to confusions between the target and the masker.
 - Stimulus Uncertainty, which leads to potential widening of the auditory filters or "holistic" listening (as opposed to "analytic" listening).
- In addition, it has been well documented that some listeners are more susceptible to informational masking than are others.

Durlach, Mason, Kidd, Ahrugas, Colburn and Shinn-Cunningham (2003) "Note on Informational Masking", JASA, 113

What Reduces Informational Masking?

- **Dissimilarity** between the target and masker (binaural, temporal or spectral)

Target: 10-, 100- or 200- ms 1000-Hz tone
Masker: 200-ms multicomponent maskers with a “protected” region centered on the target frequency (1000 Hz).
Release calculated relative to masking with a 200-ms signal.
Dichotic: target 180-degrees out-of-phase; maskers diotic.
Signal-type: amplitude modulation of various types applied to the target; narrowband noise target.

Neff (1995) “Signal properties that reduce masking by simultaneous, random-frequency maskers”, JASA, 98 (Figure 6)

What Reduces Informational Masking?

- **Certainty** about the stimulus

Target: 1000 Hz tone.
Maskers were either Fixed across a block of trials or presented in Random order.
Total masker level was always 60 dB SPL.

Durlach, Mason, Golon, Reish-Cunningham, Colburn, and Kidd (2005) “Informational masking for simultaneous nonspeech stimuli: Psychometric functions for fixed and randomly mixed maskers”, JASA, 118 (Figure 1)

Durlach et al. (2005) Figure 2

Fixed Masker
Random Masker

L1 - L4: Fixed better than Random
L5: No Difference

For most listeners, certainty about the masker improved performance.

The data were largely captured by a model best described as a single filter of adjustable width centered on the target frequency.
This model thus includes both energetic and informational components.

Informational Masking with Speech:

It isn’t just for tones anymore...

- A number of recent studies have demonstrated substantial informational masking with speech stimuli.
- These results, along with large effects of binaural and spatial separation, have direct relevance to listening in real world environments.
- Increasingly, these studies have considered the effects of age and hearing loss as well.
Informational Masking with Speech Stimuli

To reduce the effects of peripheral or “energetic” masking, processed speech has been used. Masker energy restricted to non-target critical bands.

Sentence were of the form “Ready [callsign] go to [color] [number] now.”

32 possible keyword combinations: 4 colors (red, white, green, blue) and 8 numbers (1 to 8). Four different male talkers and eight different callsigns.

The Processing Scheme

1) Sentence passed through 15 1/3-octave bandpass filters (evenly spaced in log frequency between 215 Hz and 4891 Hz).
2) Envelope of each filter output extracted via lowpass filtering (50 Hz) and halfwave rectification.
3) Envelope used to modulate a sinusoid with a frequency identical to center frequency of bandpass filter.
4) 8 modulated sinusoids randomly selected for target, 6 of remaining 7 selected for masker.

A new set of frequencies was chosen on each trial.

How much energetic masking is there?

60 dB Speech Target
Task: Identify key words (“Blue Four”)

Masker:
Different-band Speech or Different-band Noise

Callsign ‘Baron’ used to identify target sentence.

Kidd, Mason and Gallun (2005) “Combining energetic and informational masking for speech identification”, JASA, 118
(Modified from Figure 1)

Introduction to Informational Masking
Informational Masking with Speech
Release from Informational masking
Hearing Impairment and Release from Informational Masking
A Conceptual Model with Implications for Hearing Impaired Listeners and Future Work
Binaural Release from Informational Masking

These results are representative of a growing literature indicating that for young, normal hearing listeners, real or perceived spatial separation is an extremely effective method of reducing informational masking.

Examples:
- Brungart and Simpson (2002) “Within-ear and across-ear interference in a cocktail-party listening task”, JASA, 112

Introduction to Informational Masking

Informational Masking with Speech

Release from Informational Masking

Hearing Impairment and Release from Informational Masking

A Conceptual Model with Implications for Hearing Impaired Listeners and Future Work

What about Hearing Impaired Listeners?
- Arbogast et al. (2002; 2005) used these same stimuli, but presented the stimuli from colocated or separate locations in an open-field environment.
- 10 normally hearing (NH) and 10 hearing impaired (HI) subjects (both aged 18-79) participated.
- Performance was measured for three different maskers: different-band sentence, different-band noise, same-band noise.

Psychometric functions obtained for all listeners (four NH listeners shown here)

Spatial release from masking (SRM) defined as the difference in Target/Masker ratio between the fitted logistic functions calculated at the 50% correct point.
Spatial Release

NH did better and had greater release for the different-band sentence masker

NH did better on different-band noise, but release was the same

NH and HI performed identically on same-band noise

What about with unprocessed speech?

Kalluri and Edwards (2007) "Impact of hearing impairment and hearing aids on benefits due to binaural hearing" ICA, Madrid, Spain

Again HI listeners derived less benefit from spatial separation.

The Implications For Hearing Loss

Arbogast et al. (2002; 2005) demonstrated that binaural release for primarily informational maskers is greater for NH than HI listeners.

The results of Kalluri, Eiler and Edwards (2007) suggest that in order to get the full benefit of spatial separation, it is important for HI listeners to have access to both ILD and ITD cues.

Do modern hearing aids preserve these cues?

How do reverberant environments affect spatial release?

Figures by Marrone, except where noted.
In the less reverberant environment, all four groups received a benefit from spatial separation, despite the fact that there was no “better ear” due to the symmetrical masker placement.

Age and hearing loss resulted in reduced spatial release, with quiet threshold accounting for 65% of the variance across listeners.

With the addition of Plexiglass to the walls, the reverberation increased and spatial release decreased for all listeners.

The results clearly show the substantial impact of hearing loss on spatial release from masking. Hearing aids and aging appear to have less of an effect, at least for these conditions.

How Well Can Hearing Impaired Listeners Use Other Cues to Release from Informational Masking?

Targets: sequence of five spoken digits
Maskers: time-reversed speech (potential target sequences)
Presentation: five loudspeakers each presenting five “epochs” of sound
Cues: “when”, “where” or “when + where” a target would occur

Task: Repeat the target sequence, ignoring all 24 other time-reversed sequences

15 Younger Listeners participated
Seven HI, aged 19 – 42
Eight NH, aged 19 – 30

All stimuli presented at 30 dB SL, except in a follow-up condition, (indicated by “NH-3dB” on results slide) where NH repeated experiment with target reduced in level by 3 dB
HI benefit from cues, but benefit of spatial information not as much as for NH listeners. Best et al. (2007) Figure 3

The Implications for Future Work

Future work should focus on:

1) identifying the cues that lead to the formation of auditory objects

2) finding ways to enhance and preserve access to those cues through the use of mechanical aids and/or rehabilitative training

The Implications for Hearing Impaired Listeners

- Initial simultaneous grouping cues (e.g., onsets, offsets, modulation, and harmonic structure) and ongoing sequential grouping cues (e.g., location, pitch, and harmonic cues) are degraded by hearing loss and may be distorted by hearing aids.
- Since objects and sound streams are necessary for selectively attending to a target, a less-robust representation of these spectro-temporal cues may lead to reduced competition among objects.
- Reduced competition results in less suppression of sources that would normally be forced into the perceptual background.
- Competing sources that are not suppressed effectively cause greater perceptual interference or “informational masking”.

Summary

- Informational masking as it applies to real-world listening by older and hearing impaired individuals is a rapidly expanding area of research.
- Currently, the results indicate that the common complaints about hearing loss may be due to a lack of release from informational masking rather than greater informational masking overall.
- Cues may be further degraded by hearing aid processing, so future work should involve:
 1. identifying the cues that are most useful
 2. ensuring those cues are preserved, and
 3. teaching listeners to use them.
Research support provided by grants to Boston University from NIH/NIDCD, AFOSR, ONR and NSF.

Support for the preparation of this talk provided by a grant from the Department of Veterans Affairs, Veterans Health Administration, Rehabilitation Research and Development Service to the Portland VA Medical Center.

References (in order of appearance)

Fletcher (1940) “Auditory patterns” Reviews of Modern Physics, 12
Neff and Callaghan (1988) “Effective properties of multicomponent simultaneous maskers under conditions of uncertainty”, JASA, 83
Durlach, Mason, Kidd, Arbogast, Colburn and Shinn-Cunningham (2003) “Note on Informational Masking”, JASA, 113

References Continued (in order of appearance)

Kidd, Mason and Gallun (2005) “Combining energetic and informational masking for speech identification”, JASA, 118
Gallun, Mason and Kidd (2005) “Binaural release from informational masking in a speech identification task”, JASA, 118
Brungart and Simpson (2002) “Within-ear and across-ear interference in a cocktail-party listening task” JASA, 112
Best, Ozmeral, Gallun, Sen and Shinn-Cunningham (2005) “Spatial unmasking of birdsong in human listeners: Energetic and informational factors”, JASA, 118

References Continued (in order of appearance)

Kalluri and Edwards (2007) “Impact of hearing impairment and hearing aids on benefits due to binaural hearing” ICA, Madrid, Spain