Gabrielle (Gaby) Saunders Ph.D.

National Center for Rehabilitative Auditory Research, Portland OR

NCRAR National Center for Rehabilitative Auditory Research VARehabilitative Research & Development

Mission

"to benefit veterans by alleviating the communicative, economic and social problems resulting from auditory system dysfunction"

Investigators Audiologists Research Assistants Engineers Biostatisticians Administrative

Components

- Research
- Education & Outreach
- Mentoring
- Collaborate

Components

RESEARCH

- Prevention of Hearing Loss, and Hearing Conservation
- Diagnosis and Assessment
- Rehabilitation Strategies, Devices and Techniques

Anechoic Chamber

Future Research Directions

- Rehabilitation of blast-related and noise-induced auditory injuries
- Rehabilitation strategies based on neural plasticity of the central auditory system
- Rehabilitation of dual-sensory impairment
- Telehealth and web-based audiological services and programs

All are translational hearing research initiatives

NCRAR Collaborating Sites

VA Research Centers

COE for Aging Veterans with Vision Loss, MS COE West, HSR&D Polytrauma and Blast Injury QUERIs Palo Alto & Minneapolis, COE on Restoration of Function in Spinal Cord Injury & MS

VA Medical Centers

Bay Pines, FL, Biloxi, MS, San Diego, CA, Seattle-Tacoma, WA, Tampa, FL, Martinez, CA, Columbia, MO, Washington, DC, Nashville, TN

Portland VAMC

Audiology and Speech Pathology, Otolaryngology, Education, Neurology, Internal Medicine, Psychology, Oncology, HSR&D Division

NCRAR

OHSU

OHRC, Dept. Med., Public Health & Preventative Medicine, SOSE, Behav. Neuroscience, Neurology, Advanced Imaging Research Center, School of Nursing, Oncology, Otolaryngology

Institutes & Agencies

Walter Reed Army Medical Ctr., Boys Town Nat'l Rsh. Hosp., Naval Submarine Med Rsh. Lab., House Ear Inst, Cleveland Clinic, Smith-Kettlewell Eye Rsh. Inst. Starkey Hrg Rsch Ctr, Legacy Health System, DoD, VA Aud. & Spch.Path. Program Office

Universities

Maryland, South Florida, Western Oregon, Pittsburg, Wisconsin, Emory, Indiana, Connecticut, Southern Illinois, Oregon, Washington, Regensburg Germany

Components

MENTORING

- 'The next generation of auditory scientists' (post-doctoral fellows, career development candidates, career scientists, visiting scientists)
- VA clinicians who have a desire to participate in conducting research
- Au.D. students

Au.D. students

- 4th year externships: a research-based clinical experience
- NIH-sponsored summer research internship experiences: four students/year over the next 5 years

Components

EDUCATION

- Professionals
- Students
- Veterans
- Community

Education

- Professional seminar series
- Community Lecture Series
- Brochures for download
- Web-based Programs (tinnitus training for clinicians)
- Multimedia Hearing Loss Prevention
 Program
- Training Programs/workshops

 NCRAR Biennial Conferences: Hearing Therapies for the Future September 27th & 28th 2007

 Pre-conference workshop: "Best practices in hearing loss prevention" Theresa Schultz Ph.D., Kyle Dennis Ph.D. & David Chandler Ph.D.

www.ncrar.research.va.gov/Education/Conf2007/Index.asp

Some of My Research

- Performance-Perceptual Test as a Counseling Tool
- Localization and aging auditory system
- Hearing Loss Prevention program

Worked on these with Anna Forsline, Samantha Lewis and Susan Griest

Hearing Aid Outcomes Measurement

Why measure hearing aid outcome?

- Justify costs to insurers and government
- Validate clinical decisions
- Demonstrate effectiveness of intervention to patients and their families.
- To help improve service we provide
- To create benchmarks against which to compare our clinical results.
- To establish a database for evidence-based practice and clinical practice guidelines

Hearing Aid Outcome Measures

Two types are commonly used:

- Questionnaires to assess 'subjective' outcome
- Measures of speech understanding (in quiet and in noise) to assess performance-based outcome.

What Are We Measuring?

FACT:

Questionnaire responses do not always reflect measured performance

i.e. there is often a disconnect between reported benefit and measured benefit

What Are We Measuring?

Some people report low satisfaction BUT testing shows considerable benefit

Others report high satisfaction BUT testing shows little or no benefit

At least 2 reasons:

1. Performance testing is conducted in the clinic, questionnaires reflect 'real world' listening.

Is it surprising then? Which should we take notice of?

2. Different tools are used to measure each. i.e. Questionnaires VS. Performance tests

Difficult to directly compare these two types of measure

We came up with a test that enables a direct comparison of these.

Performance-Perceptual Test (PPT)

Tests two conditions:

Performance = Actual ability to understand speech in noise (HINT)

Perceptual = Perceived ability to understand speech in noise

USING THE SAME TEST PROCEDURES

so results from the two are directly comparable

Performance

Subjects repeat back HINT sentences presented in noise

Noise level is fixed Speech level is altered depending upon response:

Made quieter when sentence is repeated correctly (S/N more adverse)

Made louder when repeated wrongly (S/N less adverse)

Perceptual

Subjects say whether they can understand sentences presented in noise

Noise level is fixed Speech level is altered depending upon response:

Made quieter when subjects say they can understand the sentence (S/N more adverse)

Made louder when subjects say they cannot understand the sentence (S/N less adverse)

The difference between these is a direct measure of the degree to which subjects (in)correctly assess their ability to hear:

= Performance Perceptual Discrepancy (PPDIS)

e.g. <u>5 dB S/N minus</u> <u>5 dB S/N</u> = 0 dB Performance SRTN Perceptual SRTN PPDIS

→ Subject accurately estimates hearing ability

5 dB S/Nminus10 dB S/N= -5 dBPerformance SRTNPerceptual SRTNPPDIS

→ Subject <u>underestimates</u> hearing ability

Positive PPDIS

5 dB S/Nminus0 dB S/N= +5 dBPerformance SRTNPerceptual SRTNPPDIS

→ Subject overestimates hearing ability

Test-retest Reliability

Data from a number of studies

Performance SRTN range: r = 0.924 to 0.988

Perceptual SRTN range: r = 0.934 to 0.989 PPDIS range: r = 0.810 to 0.880

Some studies

Used the PPT to examine individuals with 'Obscure Auditory Dysfunction (OAD)'

Individuals who complain of difficulties hearing speech in noise and yet have 'clinically normal' hearing

PPT & OAD

Purpose: What is the underlying basis of OAD?

 Tested 50 subjects with OAD & 50 controls, (pairs matched on age, thresholds, noise exposure history)

 Large test battery including PPT, frequency resolution, personality questionnaires, dichotic listening test, gap detection

Used stepwise logistic regression to determine which combination of variables best differentiated OADs from matched controls.

OADs			
Independent variable	underestimate hearing ability	d -value	P<
PPDIS	33.1	-0.59	0.006
Performance SRTN	27.0	0.41	0.007
Dichotic listening test	OADs perforn less well	ned 1.29	0.003
2kHz masked threshold	9.5	-0.38	0.010
Total	82.3		R&D

NCRAR

PPT & OAD

Next obtained a classification matrix via discriminant function analysis (DFA) to determine whether individuals were correctly or incorrectly identified using this equation.

Saunders & Haggard (1992); Saunders, Field & Haggard (1992)

Conclusion

The PPT, in particular the PPDIS variable, provides information over and above that provided by performance measures and questionnaire measures – at least for the OAD population

Subjects

- 33 normal hearing, 74 symmetrical SNHL
- 24 binaurally aided

Tests (subset)

PPT unaided
HHIE or HHIA

Results

- Performance & Perceptual SRTNs are significantly correlated with thresholds (r=0.89 for both)
- PPDIS is not (r=0.04)
- No PPT variable is correlated with age when thresholds are accounted for.

Multiple regression analysis used to predict HHIE/A scores from age, 4F-PTA, Performance SRTN and PPDIS

All subjects

HI subjects only

- Handicap greater for underestimation of hearing (-ve β-value)
- Handicap greater for poorer performance (+ve β-value)
- Handicap greater for younger aged individuals (-ve β-value)
- Mis-perception explains almost as much variance as actual performance for HI subjects

PPT and Aided Listening

94 subjects with symmetrical SNHL
Binaural HA users

• Tests: PPT, HHIE

PPT and Aided Listening

Multiple regression analysis to predict HHIE/A scores showed the same as for unaided listening:

Greater handicap is associated with:

- Underestimation of hearing ability
- Poorer performance
- Being younger

HHIE/A

Saunders & Forsline 2006

PPDIS – what determines it?

Not really investigated this but most likely is a 'trait' rather than a 'state'

Evidence Comparison of unaided and aided PPDIS values shows no difference (t=0.3, p=0.75)

PPT as a Counseling Tool

PPDIS counseling has proven useful with OAD subjects:

- 37/50 subjects responded to a survey regarding their visits. Of these 33% found their visit useful or very useful.
- None received any 'treatment' but counseling
- Counseling is now part of a packet used in the UK

PPT as a Counseling Tool

Study in progress evaluating the PPT as a hearing aid counseling tool.

Two groups of 40 dissatisfied HA users PPT, HHIE/A, APHAB, IOI-HA Group 1 receive PPT-based counseling Group 2 receive non-PPT counseling Outcome is compared

Underestimation: PPDIS < 33rd percentile of normative data

Accurate:

PPDIS between 33rd & 66th percentile of normative data

 Overestimation: PPDIS > 66th percentile of normative data

PPT counseling consists of:

- Provision of information
- Suggested Explanations
- Subject Exposition
- Discussion
- Suggested Solutions

Provision of information

Underestimate	Accurate	Overestimate
(Content A)	(Content B)	(Content C)
This test shows	You accurately	This test shows
you hear better	assess your	you overestimate
than you think	hearing	how well you can
you do.	ability.	hear

Suggested Explanation

Underestimate	Accurate	Overestimate
(Content A)	(Content B)	(Content C)
High expectations, cautious, reluctant to take risks, lack of confidence, not want to fail		Denial to self and others, slow onset of HL, over confident

Subject Exposition

Underestimate	Accurate	Overestimate
(Content A)	(Content B)	(Content C)
Response to	Response to	Response to
above, other	above,	above, other
explanations?	comments?	explanations?

Discussion/Implications

Underestimate	Accurate	Overestimate
(Content A)	(Content B)	(Content C)
Fearful of social interaction, withdrawal, dependency.	Accepting of hearing loss and of the limitations it imposes.	Frustrate others, appear unintelligent or arrogant, misunderstandings or wrong information

Solutions

Underestimate	Accurate	Overestimate
(Content A)	(Content B)	(Content C)
Try guessing, take risks assume you heard correctly, rephrase to clarify to boost confidence, communication strategies	NA. Discuss communication strategies	Ask for clarification, admit to difficulties to self, communication strategies

All subjects in Experimental Group 2

Explanation of audiometric data Discussion of the relationship between the audiogram and speech understanding ability **Rationale for measuring the Performance SRTN Concept of S/N Description of HINT normative data Comparison of subject's Performance SRTN with HINT normative data Discussion of communication strategies**

Follow-up at 2 weeks and 10 weeks post-counseling to determine:

Has PPDIS changed? and more importantly whether Have reported handicap, disability and HA satisfaction changed?

Results

Data from 44 subjects: 23 in Group 1, 21 In Group 2

Mean age 65.4, range 48-75 years

Mean group audiogram. Left & right ears combined

Frequency (kHz)

Interesting that:

- 10 accurate
- 2 overestimators
- 32 underestimators

All dissatisfied HA users – something to do with underestimation perhaps?

Group mean PPT values from Visit 1

Repeated measures ANOVAs comparing Visits 1 & 2 Performance SRTNs

Significant finding:

main effect of aiding

Non-significant findings: main effect:

retest

interactions:

- Group x aiding
- Group x retest
- Group x aiding x retest

Repeated measures ANOVAs comparing Visits 1 & 2 PPDIS

Significant finding: main effect of aiding

Non-significant findings: main effect:

retest

interactions:

- Group x aiding,
- Group x retest
- Group x aiding x retest

Conclusion so far:

 Counseling does not change PPDIS value 'significantly' when examined in the manner

Next analysis:

 Examined subjects in terms of whether they changed PPDIS status i.e. whether they over-, accurately or underestimated their hearing ability

	Classification at Visit 2			
	Visit 1	Under- estimator	Accurate	Over- estimator
Group 1	Underestimator	7	8	0
	Accurate	3	3	0
	Overestimator	0	2	0
Group 2	Underestimator	9	3	1
	Accurate	1	4	1
	Overestimator	0	0	1

 ✓ Underestimate to accurate ✓ Overestimato to accurate 	or × Accurate overestin r × Accurate underesti	 × Accurate to overestimator × Accurate to underestimator • Accurate overest overest underestimator 	
	Desirable change	Undesirable Change	Neutral/ No Change
Group 1	10	3	10
Group 2	3	2	15

The groups do not differ significantly but almost chi-square = 0.091

Questionnaire data

 To date, the questionnaire responses show no group differences

Data from a final interview are more interesting

Final Interview

Has your ability to hear with your hearing aids changed?

	Better	Same	Worse
Group 1	8	14	1
Group 2	6	15	0

Have you had your hearing aids reprogrammed since beginning the study?

	Yes	No
Group 1	7	16
Group 2	6	15

As a result of being in this study do you feel differently about your hearing?

Group 1

I realize I 'fake' a lot Am more willing to rely on HAs **Questionnaires made me think** about my hearing Your +ve feedback was helpful Now I realise I need HAs I am willing to try/wear my HAs I can explain the difficulties I have better to my family I am more aware of what I miss I feel vindicated to know I do have a problem

	Yes	No
Group 1	11	12
Group 2	11	10

Group 2

I am more aware of my difficulties I accept and understand my HL better I know there is hope I pay more attention to what is said I have more confidence now I ask for help from people I understand I have a hearing loss and now have lower expectations

Do you feel differently about your hearing aids as a result of being in this study?

Group 1

Before study I thought HAs didn't help, now I know they do I have more respect for my HAs I realize they help me a lot I now realize I'll never hear normally again I wear them more I'm pleased to have them now Intellectually I realize their value I am more aware of what they do for me

	Yes	No
Group 1	13	10
Group 2	10	11

Group 2

I have an FM system now and so I wear them more
Now I leave them in after work, this helps at home
I feel friendlier towards them
I am more relaxed with them in
I know they help
I am more accepting of the HAs

Have you been wearing your hearing aids more since starting this study?

	Yes	Same	Wore fulltime
Group 1	9	3	11
Group 2	11	4	6

Seventy-three percent of patients who didn't already wear their hearing aids all waking hours reported increased use on Visit 2

Summary

- Almost 3 times as many individuals in Group 1 as Group 2 had a desirable change in PPDIS
- Counseling for Group 2 was also helpful
- Both groups of dissatisfied users benefited

From the final interview many people liked the counseling – even those in group 2. So if nothing else it would seem that education of patients is very helpful.

Summary

- PPT is quick and efficient (10 minutes)
- It provides information additional to that currently measured by audiometric and performance tests
- Potentially has applications as a counseling tool

Applications of the PPT

- to help 'deniers' (people who overestimate their hearing ability?) become aware that they do have hearing loss
- to give confidence to individuals that underestimate their hearing ability
- to improve HA satisfaction

Acknowledgements These studies were funded by VA RR&D grants C2709I & C3951R

Thank you to Anna Forsline my invaluable research audiologist

REFERENCES

Saunders, GH & Haggard, MP (1992). The Clinical Assessment of 'Obscure Auditory Dysfunction' (OAD) 2. Case control analysis of determining factors. *Ear Hear.* 13 241-254

Saunders, GH, Field DL & Haggard, MP (1992). A clinical test battery for obscure auditory dysfunction (OAD: development, selection and use of tests. *Br. J. Audiolol.* 26, 33-42

Saunders, GH., & Cienkowski, KM. (2002). A test to measure subjective and objective speech intelligibility. *J. Am. Acad. Audiol.* 13, 38-49.

Saunders, GH., Forsline, A., & Fausti, SA. (2004). The Performance-Perceptual Test (PPT) and its relationship to unaided reported handicap. *Ear Hear.* 25, 117-126.

Saunders GH, Forsline A. (2006) The Performance-Perceptual Test (PPT) and its application to hearing aid counseling. *The Hearing Review* 13(13), 18-25

Saunders, GH, Forsline A. (2006) The Performance-Perceptual Test (PPT) and its relationship to aided reported handicap and hearing aid satisfaction. *Ear and Hearing* 27(3) 229-242.

Sound Localization and the aging auditory system

Horizonatal sound localization and the auditory system

Interaural time differences (ITD): signals <1.5 kHz Interaural level differences (ILD): signals > 2 kHz Spectro-temporal pinna cues: > 6.0 kHz & back-front discrimination

Background

Localization in horizontal plane is better for:

- Wide-band signals than narrow-band signals (both ILDs and ITDs are available)
- Low and high frequencies over midfrequencies
- Re: low vs. high: data are mixed

Background

Impact of hearing loss

- Asymmetric hearing loss is a huge problem
- SNHL has (surprisingly little) impact of localization if the signal is audible
- Localization performance is not easily predicted based on audiogram
- SNHL seems to affect LF localization more than HF localization – audibility provides access to ILD cues not ITD cues?

Background

Impact of Age Few studies, those that exist show:

 Independent effects of age and HL on sound localization

Study

What are the effects of aging and hearing loss on localization of sound in horizontal plane for signals of different frequency and bandwidth?

Methods

Subjects

Three groups

10 young normal hearing listeners (YNH)10 Older normal hearing listeners (ONH)10 older hearing impaired listeners (OHI)

Participant ages by group.

Group	Mean Age	SD	Range
YNH	26.8	4.3	20-35
ONH	66.3	4.8	60-74
OHI	69.0	7.2	59-78

Analyses show YNH differs from ONH & OHI but ONH and OHI do not differ

Test Measures

Audiometric evaluation:

- pure tone thresholds
- Word recognition at 40 dB HL CID W-22 list
- Speech reception threshold CID W-1 list

Speech Perception in Noise • HINT

Sound Localization measurement

Speech test results, along with ANOVAs for between-group comparisons.

Sound localization

<u>Signals</u>

NBN: 0.25-0.5 kHz, 1-2kHz, 3-6kHz WBN: Speech-shaped 500ms duration with 10ms rise-fall times 70 dB SPL

Test configuration 24 speakers, separated by 15° 3 repetitions per speaker

Calibration

Automated process. Tolerance of +/- 0.25dB SPL

<u>Practice run</u> White noise

Touch screen

Photo of booth

Front-Back reversals

Back-Front reversals

Percentage of F-B and B-F reversals by participant group and test stimulus.

	Front-Back			
Participant Group YNH ONH OHI	Speech Main effect of stimulus F-B errors: more for mid than others B-F: more for LF & HF than mid and speech No significant effects for comparisons involving aroun			
	LOW	Mid	High	Speech
YNH	21.4	6.7	7.8	0
ONH	7.8	3.3	20.7	2.3
OHI	13.6	1.2	12.7	3.4

) AR

٦&D

est stimulus

Mean RMS errors

Participant	RMS error				
group	Low	Mid	High	Speech	
YNH	55.1 (10.2)	50.8 (15.2)	49.0 (20.8)	16.4 (2.9)	
ONH	61.0 (6.5)	66.6 (8.4)		21.3 (9.1)	
OHI F=(P-	RMS errorRMS errorRMS error withoutRMS errorF-B and B-FMain effect of Main effect ot teraction stimulusMain effect of stimulus				
				Speech	
YNH	رور	44.9 (1 .4)	44.7 (17.8)	16.4 (2.9)	
ONH	55.6 (6.8)	60.9 (7.9)	56.9 (11.3)	27.7 (9.2)	
ОНІ	55.9 (6.3)	62.4 (10.4)	60.5 (13.0)	45.2 (14.7)	
F=(2,29) P-value	4.9 0.016	8.7 0.001	3.2 0.056	20.5 <0.001	

NCRAR

YNH listeners performed better than ONH and OHI

- For LF & MF signals ONH and OHI did not differ, both performed more poorly than YNH
- For speech-shaped noise all groups differed with YNH best and OHI poorest
- For HF signal there were no group differences

Not likely due to peripheral HL

- Since thresholds differ in HF but localization in HF does not
- Past studies show mild SNHL has little impact on localization

Why?

Central auditory processing capacity

 Studies have shown older individuals had reduced ability to use ITD cues or needed longer time delays to hear a difference than younger individuals – thus the poorer performance with LF and MF signals

What to do?

- HA manufacturers may address: filter to mimic 'average' pinna cues
- Use a questionnaire such as the Speech, Spatial and Qualities Scale (SSQ) to monitor changes

Table 5. Pearson correlation r-values for relationships between RMS error value raw correlations and correlations controlling for days between test and retest a

Signal		Raw correlation	Partial correlation	Fisher z- value
Low	Total RMS error	0.694	0.697	0.017
	Total RMS error B	0.757	0.756	0.007
Mid	Total RMS error	0.841	0.851	0.103
	Total RMS error B	0.786	0.802	0.126
High	Total RMS error	0.849	0.853	0.042
	Total RMS error B	0.819	0.816	0.026
Speech	Total RMS error	0.602	0.576	0.116
	Total RMS error B	0.692	0.674	0.115

Figure 3

- 48 individuals with SNHL
- Wore binaurally HAs for 18 months for study.
- Ran PPT once every three months (averaged data used here)
- Completed 4-item HA satisfaction questionnaire

HA satisfaction questionnaire

- How satisfied are you overall with the performance of your HAs?
- To what extent do your HAs fulfill your specific needs?
- Do you think you get as much benefit as others?
- For talking in a group I find my HAs: (very useful to not at all useful)

PPT and Aided List Poor SRTN = S/N higher than Data were then used to class moon + 2SE **Underestimation** Good vs. poor Perfor = mean PPDIS -2SE **Underestimation versus** underestimating hearing **HA Satisfaction** score in top 75% (PPDIS) vs. bottom 25%

'Content' and 'Discontent' users

DFA used to examine how well the combination of the PPDIS and the Performance SRTN correctly classified subjects into content and discontent users

i.e. can you use PPT to predict hearing aid satisfaction?

Res	ults	More false negatives than false positives i.e. over- predicted contentedness		
	Actual group	Discontent	Content	
	Discontent	73%	27%	
	Content	24%	77%	

Saunders & Cienkowski, 2002

Group mean PPT values from Visit 2

			F-value
Variable	Group 1	Group 2	P-value
Unaided Performance	-0.46	0.40	F-0.19
SRTN	(2.9)	(5.3)	P=0.667
Aided	-3.1	-1.4	F=3.68
Performance SRTN	(2.9)	(3.7)	P=0.062
Unaided PPDIS	-3.7	-4.6	F=0.046
	(2.8)	(3.1)	P=0.832
Aided PPDIS	-3.2	-3.4	F=1.75
	(2.5)	(2.5)	P=0.194
Aided benefit	2.7	1.8 (2.5)	F=3.10
	(2.3)		P=0.086

