Monitoring Ototoxic Changes in Auditory and Vestibular Systems

Jaynee A. Handelsman, Ph.D. Dawn Konrad-Martin, Ph.D.

> November 18, 2005 Sponsored by Special Interest Division 6

Ototoxicity

- Damage to the inner ear from toxic agents
- Negative consequence of the availability and use of medications that prolong life through treatment of serious infections and cancer
 - Chemotherapy agents
 - Antibiotics
- Result is damage to cochlear and/or the vestibular end organs
- Evidence suggests that there are no "safe" levels

Short Course Objectives

- Provide overview of pathophysiology involved in damage related to aminoglycoside, platinum-based drug, and noise exposure
- Discuss clinical features of auditory and vestibular system damage
- Discuss the challenges involved in monitoring for auditory and vestibular system changes

Short Course Agenda

- Presentation of issues related to auditory system monitoring
- Presentation of issues related to vestibular system monitoring
- Interaction with course participants including questions and discussion of possible solutions

Monitoring for Ototoxicity-Induced Hearing Loss

VA RR&D National Center for Rehabilitative Auditory Research

Portland VA Medical Center Portland, Oregon Dawn Konrad-Martin Jane S. Gordon James A. Henry Kelly M. Reavis Kristi Gilmer Knight Stephen A. Fausti

Pathophysiology: Platinum-based Drugs

- Oxidative Damage (Evans & Halliwell, 1999; Gratton & Smith, 2004; Rybak & Kelly, 2003)
 - Hair cell damage/death
 - Damage to stria vascularis and sprial ganglion cells (Tsukassaki et al., 2000)
- Hair cell damage begins at base, progresses toward apex, first row of OHCs followed by second and third rows, and then the IHCs (Gratton & Smyth, 2004)

Pathophysiology: Noise-Induced Hearing Loss

Noise exposure during and after treatment can act synergystically with ototoxic drugs

Causes additional oxidative stress and production of free radicals

Clinical Features

- Tinnitus
- Hearing loss
 - Difficulty understanding speech in noise
 - Sensorineural, usually bilateral, symmetric
 - Progresses from high to low frequencies
- Symptoms can be delayed days, months
- Usually permanent, sometimes recovers
 - Hearing changes from ototoxicity in young children increased from 11% during early post-treatment evaluations to 44% after 2 years (Bertolini et al., 2004)

Challenges

- Complaints of ototoxic damage are uncommon until communication problem becomes significant
 - how much change at how many frequencies is "significant"
- Difficult to predict ototoxic damage
 - Relationship to drug dosage, peak serum levels, and other toxicities is variable

Things to Consider

- Define Purpose
- Target Patients
- Create Referral Base
- Choose Tests
 - Test schedule
 - Change criteria
- Communicate Results
- Education, Counseling & Rehabilitation

Purpose of Monitoring

• Early Identification, prevention

Should we care about early changes enough to take the time to measure them?

Consequences for Communication

- Audibility of consonants critical for understanding speech (De Paoli et al., 1996)
 - Most energy from 2 to 4 kHz
 - 50% of English consonants are fricatives (/v,f,z,s/, etc.) & contain energy through at least 8 kHz
 - /s/ spoken by women & children indistinguishable from
 /f/, /th/ when energy cut off at 4 kHz (Stelmachowicz et al., 2001)
- Consonants are low in level compared to vowels
 - Unvoiced (/s,p,t,k,th,f,sh/) often below normal thresholds in rapid speech (Northern & Downs, 2002)

Rationale for Monitoring

- Loss within 2 to 9 kHz range clinically significant for children
- Some impact of high frequency loss on speech understanding, even in adults
- And... hearing aid amplification typically cuts off at 5 kHz
- Moreover, continued damage may affect more of the critical speech frequencies

Benefits of Monitoring

- Early detection may prevent hearing damage that requires amplification/rehabilitation
- If change observed, treatment modification can prevent further hearing loss
- If no change observed, continued treatment warranted
- Provides opportunity for counseling and rehabilitation during and post treatment

Informed medical decisions

Target Patient Population

- Receiving highly ototoxic drugs
- Very old & very young people
- Poor medical condition
- Poor renal function
- Poor hydration status
- Familial tendency for susceptibility (aminoglycoside antibiotics)
- Receiving more than one ototoxic drug
- Receiving large or multiple doses

Incidence

- Patient population differences
 Different risk factors
- Methodological differences

Established baseline

Criteria

Frequency range tested for hearing change

• No standard monitoring techniques

Evaluation Tools

- Pure-tone thresholds
 - near upper frequency hearing limit (e.g., ultrahigh frequency audiometry)
- Otoacoustic Emissions
- HF Auditory Brainstem Responses

Tests sensitive to damage at highfrequencies provide earliest detection (Fausti et al., 1999; Ress et al., 1999)

Testing Protocol

Baseline Evaluation

- (1) Case history, family history of ototoxicity, noise exposure and tinnitus history
- (2) Otoscopy
- (3) Tympanometry
- (4) Pure-tone AC thresholds 0.5 to upper frequency limit
- (5) Identification of uppermost frequency with a threshold of < 100dB SPL followed by the adjacent six lower frequencies in 1/6th octave steps (SRO re: Fausti et al., 1999)
- (6) DPOAEs
- (7) Vestibular testing, visual acuity

Baseline Re-Check

- Repeated pure-tone thresholds within 24 hours or as soon as possible, to determine intersession reliability
- If test-retest differences exceeded 5 dB, signals importance of cross-check.

Monitor Evaluations

- CDDP and Carbo subjects tested w/in 24 hours of each dose
- AMG and Control subjects monitored every 2 to 3 days throughout treatment course.

Post-Treatment Evaluations

- ASAP following treatment cessation, and at one, three, and six months following treatments
- Same procedures used as for baseline evaluations

Criteria for Hearing Change

- Always referenced to baseline measures
- Criteria from ASHA 1994 guidelines:
 - $-(1) \ge 20$ dB change at any one test frequency
 - (2) ≥ 10 dB change at any two consecutive test frequencies
 - (3) loss of response at three consecutive test frequencies where responses were previously obtained.
 - Hearing change by any of these criteria was confirmed by retest

ASHA Change Criteria

- Normal variability in pure-tone thresholds occurs at random frequencies
- Threshold shifts at adjacent test frequencies indicate more systematic change (Atherly, 1963; Dobie, 1983)
- Threshold shifts on repeated tests are also a stronger indication of a true threshold change (Royster & Royster, 1982)

EHF Sensitivity

- High- to low- frequency progression
- High-frequency testing is reliable (Fausti et al., 1998; Frank, 1990; Frank & Driesbach, 1991; Gordon et al., under review)
- Studies have shown the efficacy of highfrequency monitoring (Dreschler et al., 1989; Fausti et al. 1984; Jacobson et al., 1969; Ress et al., 1999; Tange et al., 1985; Van der Hulst et al., 1988; Fausti et al., 1993; Fausti et al., 1994)
- Studies have shown testing in 1/6-octave intervals provides earlier detection (Fausti et al., 2003; Vaughan et al., 2003)
- Individualized protocols targeting the highest frequencies a person can hear

Problems: EHF Testing

- There are no normative high-frequency sensitivity (i.e. threshold) standards due to lack of standardization in
 - calibration,
 - instrumentation,

- and methodological procedures

Fausti SA, Frey RH, Rappaport BZ, Schechter MA. Highfrequency audiometry with an earphone transducer. Sem Hear 1985;6:347-357

Problems: EHF Testing

- There is a high degree of inter-subject threshold variability in high frequency sensitivity
 - Threshold variability increases with age (in elderly) and with higher test frequencies
 - Schechter MA, Fausti SA, Rappaport BZ, Frey RH. Age categorization of high-frequency auditory threshold data. J Acoust Soc Am 1986;79:767-771.
 - Matthews LJ, Lee FS, Mills JH, Dubno JR. Extended highfrequency thresholds in older adults. J Speech Lang Hear Res 1997;40:208-214.

Does it Matter for Monitoring?

- The key to serial monitoring is intrasubject (test-retest) reliability
- High-frequency test-retest threshold variability is within a clinically acceptable range (<u>+</u> 10 dB)
- As a result, monitoring near individual's high-frequency hearing limit is effective

ABR Sensitivity

 Elongation of latency and/or disappearance of click-evoked wave V following administratior of ototoxic drugs

- Ultra-high frequency tone bursts (8-14 kHz) more sensitive than clicks
 - Sensitivity was 84% in Fausti et al., 1992
 - Latency changes found
 - However, 60% of all initial changes were from scorable at baseline to non-scorable

Problem: Frequency Specificity

- Two problems at high stimulus levels
 - Increased spectral splatter (stimulus energy spreads)
 - Response could be due to tails of offfrequency neurons
- Pertains to all measures of auditory function with all kinds of stimuli
 - -e.g., evoked potentials, behavioral measures
 - Clicks, tone bursts, pure tones

Problem: Change Criteria

- No broadly accepted ABR latency change criteria
- In veterans receiving cisplatin, shift of 0.3 ms for wave I or wave V or change of a previously scoreable response to non-scoreable was used

(Fausti et al., 1992)

ABR Advantages

- Good test-retest reliability
- Can be performed at bedside
- Can estimate thresholds (magnitude of ototoxicity-induced hearing loss)
- Can obtain in patients with substantial pre-existing hearing loss (up to severe to profound)

ABR Disadvantages

- Time consuming
- Limited frequency specificity (depending on how performed)
- Limited high-frequency output
- Response interpretation at high frequencies
- Subject noise, hearing loss may preclude measurement
- Infants & children may require sedation

OAE Sensitivity

- Link between ototoxic DPOAE changes and OHC changes (for review see Whitehead et al., 1996)
- Conventional audiometric changes occurred later relative to OAE, or not at all (AMG: Katbamna et al., 1999; Stravroulaki et al., 2002; Mulheran & Degg, 1997; CDDP: Ress et al., 1999)
- Compared to behavioral testing within the high frequency (> 8000 Hz) range, DPOAEs showed effects of ototoxicity in similar proportion of ears (Ress et al., 1999)

Problems: Change Criteria

\geq 6 dB change

- Based on test-retest variability in normal subjects
- 6 dB change was more than variability in about
 95% of subjects tested--so likely to be real change
- Confirm by re-test to decrease false positive rates
- Change at two adjacent frequencies would decrease false positive rates
- Verify YOUR own test-retest reliability

DPOAE Advantages

- Earliest ototoxicity detection
- Frequency specific and can measure over a wide frequency range
- Good test-retest reliability
- Rapid
- Can be performed at bedside
DPOAE Disadvantages

- Limited high-frequency (> 6 kHz) measurements
- DPOAE amplitudes linked to hearing sensitivity only for losses < 50-60 dB
- Pre-existing hearing loss may preclude measurable responses at baseline
- Depends on normal middle ear function

Monitoring for Vestibular System Ototoxicity

Jaynee A. Handelsman, Ph.D. Vestibular Testing Center University of Michigan Health System

Early Observations of Bilateral Vestibular System Disorders

- James first reported "sense of dizziness" in deafmutes in 1882
- failure to experience vertigo following rotation
- loss of orientation under water
- failure to experience "seasickness" when exposed to rough weather at sea
- approximately 50% of deaf-mute patients had deficient equilibrium function

Early Observations of Bilateral Vestibular System Disorders

- Barany (1907) reported reduced caloric and rotational-induced nystagmus in deaf-mutes
- At first it appeared as if there were no clinical (functional) differences between subjects with and without vestibular responses
- later studies (1920s and 1930s) revealed permanent absence of past positioning reactions and oscillopsia with bilateral loss

Classic Self Report of J.C. 1952

- 76-day course of streptomycin for treatment of knee sepsis
- Symptoms progressed over a 2-3 day period
- Head movement caused by pulse sufficient to disturb vision without head stabilization
- Instability when trying to ambulate
- Gradually learned to minimize head movements when reading and to use visual and somatosensory information to compensate

Case Report by Minor 1998

- Gradually noticed unsteadiness and disturbed vision over a two month period following a twoweek course of gentamicin
- Final gentamicin course occurred after 30 days of induction chemotherapy and pre-chemo treatment with vancomycin, ciprofloxin, and a 3week course of gentamicin
- This case represents a more delayed and gradual onset of symptoms than was the case with J.C.

Two Most Common Causes of Acquired Bilateral Vestibulopathy

- Vestibular Ototoxicity
- Idiopathic vestibulopathy

Factors Determining Individual Vestibulotoxicity

- Individual tolerance
- Impaired renal function
- Hyperthermia
- Prior or concomitant exposure to other ototoxic agents
- Dosing strategy perhaps, although recent evidence suggests this might not be the case
- Aging

Aminoglycosides

- Selective cochlear and/or vestibular toxic agents
- Readily absorbed from intramuscular and subcutaneous sites; poorly absorbed from intestinal tract
- From blood, about 50% is excreted unchanged in 24 hours
- With renal insufficiency, blood levels may remain high for many days
- Distributed to all extra-cellular fluids (e.g. endolymph and perilymph)

Most Vestibulotoxic Aminoglycosides in Humans

- gentamicin
- steptomycin
- tobramycin

Mechanisms of Ototoxicity

- It appears that ototoxicity is not caused by accumulation of the substance in the ear
- Rather, it appears to be caused by the drug's penetration into compartments from which the half-life of distribution is extremely long
- Likely results from rapid uptake, early saturation, and long exposure of the innerear tissues to the drug

Gentamicin Ototoxicity

- Caused by a metabolized or "activated" form of the drug
- Activation may result from formation of an iron-gentamicin complex that produces toxic free radicals

Future Outlook: Protective Drugs May Limit Aminoglycoside and Cisplatin-induced Ototoxicity

- antibiotic fosfomycin may compete with aminoglycosides for reactive sites on the hair cell membrane, thereby reducing intracellular aminoglycoside accumulation
- other drugs studied in animals include glucarolactam, sodium thiosulfate, cepharanthine, and poly-l-aspartic acid
- antioxidants shown to be protective in animals

Terms Used to Discuss Vestibular Dysfunction

- Vertigo the sensation of movement of self or environment without movement
 - Objective environment
 - Subjective self
- Oscillopsia
- Disequilibrium
- Unsteadiness, ataxic gait
- Dizziness

Signs of Acute Bilateral Vestibular Loss

- ataxia of gait
- ataxia of stance
- saccadic eye movements with rapid head turning
- changes in visual acuity with head shaking or nodding

Symptoms of Bilateral Loss

 Oscillopsia – an illusory movement of viewed stationary objects or surrounds occurring with head movement

 Gait ataxia – uncoordinated wide-based gait that is commonly associated with a variety of disorders including cerebellar disease and bilateral peripheral vestibular loss

Vestibular System is Responsible for Sensing and Controlling Motion

- Receptors located within the labyrinth of each inner ear transduce information about angular and linear acceleration as well as gravity
- Information combined with visual and somatosensory signals on neurons in vestibular nuclei
- Integration of sensory signals produces information required to control vestibulo-ocular reflex (VOR) and the vestibulo-spinal reflex (VSR)

Responsibilities of VOR and VSR

- VOR facilitates maintenance of binocular fixation, thereby stabilizing gaze during rapid, shortduration head movements
- Reflexes move the eyes in the correct direction and by the precise angle required to offset the effects of head movements
- VSR enables person to maintain desired head and body positions with respect to gravity, even following imposed movement of the head or trunk

Explanation of Symptoms

- Oscillopsia is a direct result of the loss of the VOR, which is responsible for maintaining foveal vision when the head is moving, especially at relatively high speeds
- Quick movements of the head are associated with saccadic gaze readjustments rather than smooth compensatory eye movements
- Ataxic gait is due to loss of vestibular input and the need to rely on visual and proprioceptive information for maintenance of postural control

Onset May be Acute or Insidious

- dramatic onset of severe imbalance and loss of orientation in space
- vertigo
- illusion of tilting

- slowly increasing unsteadiness of gait and imbalance
- oscillopsia
- frequent use of contact cues in darkness or when walking on uneven ground

Disequilibrium Associated with Bilateral Loss

 The sensation of being off balance, perhaps even when lying down

 When the loss occurs during the course of a long illness, patients may be unaware of balance problems until they get out of bed, and then it may be attributed to weakness

Oscillopsia Associated with Bilateral Vestibular Loss

- It is a bi-directional to-and-fro and up-and down illusory movement along the same axis as head movement but in opposite direction
- typically occurs during rapid, not slow, head movement because visual pursuit provides retinal stabilization for slow movements
- Reading while walking or riding in a car is impossible
- Walking downstairs, jumping, running, head shaking or nodding produce severe reactions

Factors Determining Oscillopsia in Bilateral Vestibular Loss

- age at onset
- severity of semicircular canal dysfunction
- extent of otolithic dysfunction
- individual compensatory faculties

Reasons to Monitor Cochlear and Vestibular Function

- Cochlear function is affected by almost all aminoglycosides
- Even slight ototoxic cochlear dysfunction is noticeable, particularly via high frequency audiometry and otoacoustic emissions
- Slowly progressive vestibular dysfunction may go undetected for some time
- Vestibular ototoxicity is variable in terms of onset and progression
 - Typically bilateral involvement
 - Unilateral involvement possible

Laboratory Tests for Monitoring Vestibular Ototoxicity

- Dynamic visual acuity testing
- Caloric testing
- Rotational testing
- Dynamic posturography

Bedside Tests of Vestibular Function

- Head thrust
- Testing of dynamic visual acuity
- Romberg, tandem walking, stepping tests
- Rapid full-body turns
- Response to external perturbations

Laboratory Diagnosis of Bilateral Vestibular Loss

- Absence or reduction of caloric responses, providing physical and technical problems ruled out
- Abnormal gain and time constant for impulsive rotary testing for post-rotary nystagmus
- Breakdown of nystagmus gain and phase for sinusoidal rotational testing

Response Pattern for Partial Vestibular Loss

- Symmetrically decreased VOR gain and increased phase leads at low frequencies (<.16 Hz)
- Normal phase and gain at high frequencies (>.32 Hz)
- May or may not have gait imbalance
- Good high frequency gain is important to maintenance of gaze stability

Rotational Testing Has Value

- Caloric testing evaluates only very low frequency function (<.003 Hz)
- Rotational testing tests mid- to high frequency function (.01-.32 Hz)
- Testing the VOR at lowest rotational frequencies may provide early signs of vestibular dysfunction (e.g. due to aminoglycoside toxicity)

Unilateral Involvement

- Significant unilateral weakness in caloric testing
- Increased phase leads in rotational testing
- During the acute phase, might have spontaneous nystagmus and asymmetries in rotational testing
- Patient more likely to describe vertigo and unsteadiness, although oscillopsia is possible

Dynamic Posturography

- Useful for quantifying ataxia
- Useful for evaluating patient's ability to use visual and proprioceptive information to maintain postural stability following bilateral loss of vestibular function
- Is <u>not</u> an electrophysiological measure of vestibular function

Given Limited Time of Patient Cooperation

- Otoacoustic emissions (can be done bedside without any patient input, provided patient has normal middle ear function)
- Rotational testing (patient must be transportable, alert, and without IV)
- Dynamic visual acuity testing

Vestibular Rehabilitation is Effective in Aiding Patients with Bilateral Vestibular Loss

- Therapy aimed at fostering the substitution of visual and somatosensory cues for lost vestibular function
- Gaze stabilization exercises
- Balance retraining exercises

Adaptive and Compensatory Mechanisms Involved in Stabilization of Eye Movements

- Adaptation of saccadic eye and head movement
- Use of neck and other somatosensory afferents
- Enhanced eye tracking
- Centrally preprogrammed eye movements
- Central suppression of undesired image movement across the retina

Functional Adaptations Build within One Year

- Gaze stabilization most improved through centrally preprogrammed slow eye movements during active (predictable) head movement
- During unpredictable head movements, cervico-ocular reflexes and increased fixation may yield best stabilization
- Strongest suppression of oscillopsia achieved by central adaptive rearrangements

Compensatory Mechanisms Effective in Suppressing Oscillopsia

- Only one third of adult patients with acquired bilateral vestibular loss of function suffer from permanent oscillopsia
- This underlines the paramount biological importance of maintaining clear vision during locomotion
Roles of Vision and Propriception

- Patients are able to use vision and somatosensory input to maintain postural control in the absence of vestibular function
- When circumstance prevent their use (e.g. in darkness or when walking on uneven or compressible surfaces), gait ataxia persists for almost every patient

Bilateral Vestibular Loss -Practical Implications

- Oscillopsia, which results in visual blurring or "bobbling" - may prevent patients from driving, or even walking unassisted
- Because patients rely on vision and proprioception to maintain postural control while ambulating, darkness combined with compressible or uneven support surfaces result in increase risk of falling

At- Risk Populations

- Diabetic patients may be more profoundly affected by bilateral vestibular loss due to concurrent loss of vision and proprioception
- Renal patients are more susceptible to aminoglycoside ototoxicity because drugs are metabolized by the kidneys
- Dialysis patients are frequently at increased risk of infection, and may be more likely to have repeated exposure to aminoglycosides

Vestibular Rehabilitation - The Good News

- Research supports the fact that responses of a partially functioning vestibular system can be modified
- For patients with some residual function, VR is focused on optimizing the use of the remaining VOR, as well as increasing the effectiveness of the COR
- For all patients with bilateral vestibular loss, increasing the use of vision and proprioception is a goal

Variables Affecting Therapy Outcome

- Extent of the vestibular loss
- The presence of coexisting disease that may impact sensory system function
- Overall patient heath and fitness
- Patient motivation and compliance with program

Summary

- Ototoxicity not only relates to hearing, but to vestibular system function
- Bilateral vestibular loss can be devastating, causing ataxia and oscillopsia
- Unilateral loss is possible as well
- There is a need to monitor closely patients at risk for vestibular loss
- Vestibular rehabilitation is a useful too, and should be considered in all cases of uncompensated vestibular system involvement

